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Abstract 

 

This thesis examines a general iterative scheme for fixed points of nonlinear operators using the 

special cases of the Krasnoselskii-Mann (KM) iterative procedure for particular choices of the 

nonexpansive operator N. We prove many theorems and lemmas that help to see the relationship 

between some iterative algorithms. The iterative scheme xk+1 =Txk = 

 Nxk  has been shown to be one of the schemes that can be generally used to representߙ +xk(ߙ	-1) 

some  iterative schemes for finding fixed points of nonlinear operators.  
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Chapter One 

 

Introduction and Preliminaries 

1.1 Introduction 

Many problems in Mathematics and related field can be solved by finding fixed point of a 

particular operator, and algorithms for finding such points play a prominent role in a number of 

applications. 

The article by Bauschke (1996) is fundamental to this work. This section deals with definitions 

of some basic terms used in the subsequent discussions while some examples are also given to 

make these definitions clearer. 

 

1.2 Research questions 

There are many open challenging questions on fixed point theorem that have still not been 

answered which include the following;  

i. Is there a general algorithm for some iterative schemes finding fixed point of nonlinear  

   operator? 

ii. Are there significant relationships between nonexpansive ne operator N, firmly nonexpansive  

    fne operator F and average av operator T? 

iii. Are the iterative schemes of the complements of nonexpansive ne, firmly nonexpansive fne  

     and average operator av T converge to fixed points of T as the main operators? 

iv. Which of the properties of the operator T is sufficient to guarantee convergence of the  

      sequence {Tkx} to fixed point of T, whenever such fixed points exist? 
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1.3 Aim and Objectives of the Study 

The aim of this thesis is to unify the several iterative algorithms for finding the fixed points of 

some nonlinear operators. The iterative methods considered have the form, 

                                                        x k+1  = T x k.            for k = 0,1…                                   (1.3.1) 

Where T is a linear or nonlinear continuous operator on a real (possibly infinite dimensional) 

Hilbert space H and x0 is an arbitrary starting vector.  For any operator T  on H  the fixed point 

set of T is denoted by  Fix(T ) = {z/ Tz = z}. 

The main objectives here are; 

i. To find a common iterative scheme for some iterative algorithms for finding the fixed points of 

some nonlinear operators. 

ii. To find the property of the operator T which is sufficient to guarantee convergence of the 

sequence {Tkx} to a fixed point of T whenever such fixed points exist. 

1.4 Statement of the Research Problem 

In the algorithms of interest here, the operator T is selected so that the set Fix(T) contains those 

vectors z that possess the properties we desire  that is ‘find a general iterative scheme for some 

iterative algorithms for nonlinear operators’ finding a fixed point of the  some iterative schemes 

leads to a solution of the problem. 

Some applications involve constrained optimization, in which we seek a vector x in a given 

convex set C that minimizes a certain function f. For suitable 0 < ߛ the fixed points of the 

operator T = PC(I - ߛ∇f ) will  solve the problem under conditions to be discussed below. 
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1.5 Research Methodology 

This thesis is a review of the paper of Byrne (2004). Many related and necessary papers were 

consulted for effective outcome. These papers are thoroughly reviewed to cover a major part of 

this work. Lemmas, propositions and Theorems  are stated and proved in order to ascertain the 

properties, relationship and applications of the operators used in the thesis while conclusion are 

drawn based on the theorems, propositions and lemmas proved. 

1.6 Convergence in the normed space 

Let (X, �.�) be a normed space and let {xn} be a sequence in X, then {xn} is said to 

(i) converge strongly, if ∃ x ∈ X  ∋	 �xn- x�→ 0 as  n→ 	∞ ,  

(ii) converge strongly   if ∃ x ∈ X  ∋ |f( xn) – f(x)|→ 0 as  n→ 	∞    ∀    f  ∈   x* 

1.7 Nonexpansive operator 

An operator N on H is called nonexpansive ne if  ∀ x, y ∈ H, we have 

               �Nx -  Ny � ≤ � x  - y� 

1.8 Hilbert space 

An inner product space (or a pre-Hilbert space) is said to be complete if every Cauchy sequence 

{x n}∈ X converges to a point x ∈ X.  A complete pre-Hilbert space is called a Hilbert space. 

1.9 Fixed Point 

Let X be a nonempty set and T: X  → X be a map. We say that x ∈ X is a fixed point of T if  

 T(x) = x and we denote the set of all fixed points of T by F(T) = {x ∈ X : T x = x}. 

Many problems of nonlinear analysis could be solved by the use of various fixed points 

theorems. 
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Example 1.9.1 

                              1. If X = ℝ and T(x) = x2+ 5x + 4, then F (T ) ={-2}; 

                              2.  If X = R and T (x) = x 2 - x,  then F(T) = {0, 2}. 

Let X be any set and T: X → X be a map. For any given x ∈ X, we denote Tn(x) inductively by 

T0(x) = x and Tn+1(x) = T(Tn(x)); we call Tn (x) the nth iterate of x under T, For simplicity we use 

Tx instead of T (x). 

 The mapping Tn (n ≥ 0) is called the nth iterate of T. For any x ∈ X; the sequence {xn} n ≥ 0⊂ X 

given by xn = Txn-1,  n = 1, 2, 3,… is known as the Picard's iterations. For any given self-mapping 

T the following properties obviously hold: 

              i. F (T)  ⊂   F(Tn) for each n ∈ N, 

              ii. F(Tn) = {x}, ⇒ F(T) = {x}. 

But the reverse in (i) is not true in general, as shown by the next example. 

Example 1.9.2 Let T: {1, 2, 3} → {1, 2, 3} be denoted by T(1) = 3,T (2) = 2 and T (3) = 1.  

                        Then F (T) = {2} and FT(2) = {1, 2, 3}. 

The fixed point theorems are concerned with finding conditions on the structure that the set X 

must be endowed as well as on the properties of the operator T: X → X, in order to obtain result 

on, 

   a. existence (and possibly uniqueness) of fixed point . 

   b. the data dependence of fixed points. 

   c. the construction of fixed point. 

1.10 Operators on Hilbert Space 

(i) Adjoint Operator 
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Let y be a fixed element in H and let T (y) be defined on H by T(y)x =⟨T(x), y⟩,  ∀ x ∈ H  then 

T(y) is a bounded linear functional on H. 

 Therefore, by Riez representation Theorem ∃	a unique vector z	∈ H ∋ T (y) =⟨ x, z⟩, ∀ x	∈ H that 

is ⟨x, z⟩ = ⟨T(x), y⟩ ∀ x ∈  H putting z = T* y we see that    ⟨x, Ty⟩ = ⟨T (x), y)⟩ ∀ x, y ∈  H. 

The mapping T* is called the adjoint of T 

(ii) Self-adjoint Operator 

Let T be a bounded linear operator on a Hilbert space H. Then T is said to be self-adjoint if T = 

T*. Note that 0 = 0* and I = I*, that is zero and identity operators are self-adjoints. 

(iii) Normal Operator 

A bounded linear operator T on a Hilbert space H is called a Normal operator if T* T= TT* 

(iv) Unitary Operator 

A bounded linear operator T on a Hilbert space H is called unitary, if T* T= TT*= I 

1.11 Firmly nonexpansive operator 

An operator F on H is called firmly nonexpansive fne if F is defined as  

           ⟨Fx - Fy, x - y⟩ ≥ �Fx - Fy�2    ∀  x,y ∈ H 

1.12 Monotone Operator 

An operator G: H → H is monotone if, for all x, y ∈ H,  we have 

                           ⟨Gx - Gy, x - y⟩ ≥ 0 

1.13 Strict contraction 

An operator S on H is said to be a strict contraction (sc) if ∃ 1 ,0] ∋ ߜ),  such that  ∀  x, y ∈  H, 

            �Sx -  Sy� ≤  ��x -  y ߜ	

1.14   Average operator 

An operator A is called average if ∃	(1 ;0) ∋ ߙ and ne operator N,  ∋  we have A = (1- ߙ)I + ߙ N 
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1.15    V-ism operator 

An operator G on H is called v-inverse strongly monotone (v- ism), v > 0, ∋   

            ⟨Gx -  Gy, x -  y⟩ ≥  v �Gx  - Gy �2 

1.16   Sequences in a Metric Space 

Let X be a nonempty set, a sequence in X is a function from ℕ (the set of positive integers) into 

X. If x is a sequence in X, the image x(n) of n ∈  ℕ is usually denoted by { xn}.  It is customary 

to denote the sequence x by the classical symbol {xn}. 

 Some time we write it as {x1, x2, x3 …, xn …}. 

The following are examples of real sequences: { ௡
௡ାଵ

}, { ଵ
௡

}, { cos  ௡గ
ଷ

}. 

A sequence {xn} of real number is called 

(a) strictly monotone decreasing if  xn+1 <  xn ∀   n ∈ ℕ; 

(b) Monotone non-decreasing if     xn+1 ≥  xn ∀   n ∈ ℕ; 

(c) Strictly monotone increasing if   xn+1 <  xn ∀   n ∈ ℕ;  

(d) Monotone non-increasing if       xn+1 ≤  xn ∀   n ∈ ℕ; 

1.17 Subsequences in a Metric Space 

Let x: ℕ → X is a sequence on X. Let n: ℕ → ℕ be a strictly increasing function, then the 

function x n: ℕ →X is called a subsequence of the original sequence x: ℕ  → X. 

Example 1.17.1 The sequence of prime numbers {2, 3, 5, 7, 11,} is a subsequence of the 

sequence of natural numbers.  

The proof of this is shown below: 

Let {xn} = {2, 3, 5, 7, 11, …}. 

Then x1 = 2, x2 = 3, x3 = 5, x4 = 7, e t c. 
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Take n1= 2, n2= 3, n3= 5, n4= 7, … . Then {nk} is a strictly increasing sequence of positive 

integers. Therefore, 

         x(n(1)) = 2 

          x(n(2)) =3 

          x(n(3)) = 5 etc.: 

Hence, {2, 3, 5, 7, 11, …}.  Is a subsequence of {xn}. 

1.18 Convergence of a Sequence in a Metric Space 

Let {xn} be a sequence in a metric space (X; d), this sequence is said to converge to a point x ∈   

X if given 0 < ߝ, ∃  n0 ∈ N; such that  d (xn, x) <	ߝ    ∀ n		≥  n0 

The fact that {xn} converges to x is expressed by writing xn →  x as n →  1 or lim x n  = x 

A sequence {xn} in a metric space (X, d) is called a convergent sequence if the sequence 

converges to a point say x ∈ X. 

1.19 Bounded Sequences 

A sequence {xn} is said to be bounded below if there exists a real number  ߙ such that xn	≥       ߙ

∀ n  ∈ N. 

The numberߙ is called a lower bound of the sequence {xn}. 

Example 1.19.1 

 The sequence {xn} = {1, 2, 3, 4, …} is bounded below as there exists a number 1 which is less 

than each term of the sequence i.e.  

           xn	≥ 1,     ∀ n  ∈ N. 

A sequence {xn} is said to be bounded above if there exists a real number ߚ  such that xn	≤       ߚ

∀ n  ∈ N. 

The number ߚ is called an upper bound of the sequence {xn}. 



 

17 
 

Example 1.19.2 

 For example, the sequence {xn} = {-1, -2, -3, -4 …} is bounded above as there exists a number -

1 which is greater than each term of the sequence i.e. xn	≤ −1,     ∀ n  ∈ N. 

A sequence {xn} is said to be bounded if it is bounded both above and below. i.e. a sequence 

{xn} is bounded if there exist two real numbers ߙ and ߚ such that 	ߙ ≤ xn	≤   .n  ∈ N ∀			 	ߚ

If we choose M = max {|ߚ||ߙ|}, then the sequence {xn}is bounded provided |xn| ≤	M     

  ∀ n  ∈ N. 

Example 1.19.3 

 if x n =( 	ଵ
		௡

), then {xn} = {ଵ
ଵ
, ଵ
ଶ
 ,  ଵ

ଷ
 ,   ଵ

ସ
 ,…},   where xn	≤ 0 and xn	≥ 1, ∀ n  ∈ N. i.e. 0 ≤ xn	≤ 1. 

			∀  n  ∈ N. 

Hence, the sequence {xn} is bounded. 

1.20 Attracting mapping 

Definition 1.21.1 Suppose D is a closed convex nonempty set, T: D→D is nonexpansive, and F is 

a closed convex nonempty subset of D. we say that T is attracting w:r:t: F if for every x ∈ D|F,  

                      f  ∈ F,  then we have           �T x -  f � <  �x -  f �, 

In other words, every point in F attracts every point outside F. A more quantitative and stronger 

version is the following. We say that T is strongly attracting w,r,t, F if there is some k > 0 s.t for 

every x ∈ D, f ∈ F 

               k �x - Tx �2  ≤ �x  - f �2 - �Tx -  f �2, 

Alternatively, if emphasis is laid on k explicitly, we say that T is k-attracting w.r.t F.  In several 

instances, F is Fix T, in this case, we simply speak of attracting, strongly attracting, or     

 k - attracting mapping. 
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1.21 Outline of the thesis 

This thesis contains five other chapters after this chapter. The outlines of chapter two to 

six are as follows: 

Chapter 2: This contains the reviewed relevant literature that has direct bearing with the thesis  

                  ‘a general iterative scheme for signal enhancement and image modification’ 

Chapter 3: In this chapter, we proved lemmas, theorems, definitions and propositions; we also  

                  compare them in order to see their significant relationship 

Chapter 4: This chapter contains the analysis of some of the algorithms that are popularly used in  

                  signal enhancement and image modification which are relevant to the work. 

Chapter 5: Here, we present the main result of the thesis through a theorem which is proved to  

                  see how the objectives are accomplished. 

Chapter 6: We hereby give the conclusion based on the main result presented in chapter five and  

                 also present the summary of the entire work. 
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Chapter two 

2.0 Literature Review 

2.1 A Superior Implementation of the Algebraic Reconstruction Technique Algorithm 

In recent times, many scholars worked extensively on signal processing and image 

reconstruction; on its formations, importance and applications. 

Anderson and Kak (1984), worked on a superior implication of Algebraic Reconstruction 

Technique (ART) and agreed that the implementation of ART generates a good reconstruction in 

only one iteration, it also appears to have a computational advantage over the more traditional 

implementation of ART. 

Potential applications of this implementation include image reconstruction in conjunction with 

ray tracing for ultrasound and microwave tomography in which the curved nature of the rays lead 

to non-uniform ray density across the image. 

The two types of algebraic approach to image reconstruction; ART-type and simultaneous image 

Reconstruction Technique (SIRT)-type mutually exclusive advantages, ART-type methods based 

directly on the sequential scheme of the Kaczmarz procedure and enjoy a rapid convergence in 

the sense of the root-mean-square error criterion, Censor and Elfving (1994). 

The problems associated with the sequential ART algorithm arise because of inconsistencies in 

the set of equations representing the forward process. The discrete formulation does not exactly 

represent the line integrals of the original continuous image function. Byrne (2002) found that,  

the procedure for solving a system of consistent equations has been demonstrated to converge 

towards a generalized inverse, according to Eggermont (1990), the resulting vector is likely to 

represent a very noisy looking image. 
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They also opined that a significant reduction in the noise can be achieved if we apply all error 

correction terms for rays in a particular projection simultaneously rather than in the conventional 

sequential fashion. Furthermore, the good performance of the basic ART algorithm by the root-

mean-squared error criterion has prompted them to seek to improved reconstructions in the set   

of the equations representing the ray integrals as well as in the reconstruction procedure itself. 

As the number of iterations of an algorithm increases, the continued convergence will ultimately 

depend on the accuracy of the discrete representation of the forward projection process  

Byrne (2004).  
 

2.2 The Multiple-sets Split Feasibility Problem and its Applications for Inverse Problems 

 According to Censor and Borrfeld (1999), the multiple-sets split feasibility problem requires 

finding a point closest to a family of closed convex sets in one space such that its image under a 

linear transformation will be closest to another family of closed convex sets in the image space, 

their study on the above, offers both intensity-modulated radiation therapy (IMRT) and for other 

inverse problems, is a mathematically valid frame work for applying projection algorithms to 

inverse problems where constraints are imposed on the solutions in the domain of a linear 

operator as well as in the operator's range. 

Given closed convex sets Ci ⊆ RN,  i = 1, 2, …,t. and closed convex sets Qj	⊆ RM,  j = 1,; 2,.., r, 

in the N- and M- dimensional Euclidean spaces, respectively, the multiple-sets split feasibility 

problem, proposed and studied here, is to find a vector x* for which 

 x* ∈ C :=  ⋂t
t=1 Ci and that Ax* ∈ Q :=  ⋂r

j=1Qj                                                                  (2.2.1)  

where A is a given M x N real matrix. This can serve as a model for many inverse problems 

where constraints are imposed on the solutions in the domain of a linear operator as well as in the 

operator's range. 
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The multiple-sets split feasibility problem extends the well-known convex feasibility problem, 

when there are no matrix A and sets Qj present at all, or put differently, when Q = RM.  

The systems of linear equations, linear inequalities or convex inequalities, according to Borwein 

and Lewis (2000), are all encompassed by the convex feasibility problem which has broad 

applicability in many areas of mathematics and the physical and engineering sciences. 

These include, among others, optimization theory and image reconstruction from projections in 

computerized tomography. 

2.3 Projection Methods and their advantages 

Bortfeld and Dugundji (1970) confirmed that Projections onto sets are used in a wide variety of 

methods in optimization theory but not every method that uses projections really belongs to the 

class of projection methods. 

Projection methods are iterative algorithms that use projections onto sets while relying on the 

general principle that when a family of (usually closed and convex) sets is presented then 

projections onto the given individual sets are easier to perform than projections onto other sets 

(intersections, image sets under some transformation, etc.) that are derived from the given 

individual sets. 

Projection algorithms employ projections onto convex sets in various ways. They may use 

different kinds of projections and, sometimes, even use different projections within the same 

algorithm. 

They serve to solve a variety of problems which are either of the feasibility or the optimization 

types. They have different algorithmic structures, of which some are particularly suitable for 

parallel computing, and they demonstrate nice convergence properties and/or good initial 

behaviour patterns. 
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This class of algorithms has witnessed great progress in recent years and its member algorithms 

have been applied with success to fully-discretized models of problems in image reconstruction 

and image processing, Stark and Censor (1998). 

Apart from theoretical interest, the main advantage of projection methods which makes them 

successful in real-world applications is computational. 

They commonly have the ability to handle huge-size problems of dimensions beyond which 

other, more sophisticated currently available methods cease to be efficient. The multiple-sets 

split feasibility problem and its applications for inverse problems algorithm are the projections 

onto the given individual sets (assumed and actually easy to perform) and the algorithmic 

structure is either sequential or simultaneous (or in-between). 

Sequential algorithmic structures cater for the row-action approach, Byrne (1995), while 

simultaneous algorithmic structures favour parallel computing platforms, Gordon (1970). 

2.4 The Split Feasibility Problem 

The special case when there is only one set in each space, i.e. t = r = 1 in (2.2.1), was proposed 

by Elfving  (1994) and termed the split feasibility problem (because of the limitation to one set in 

each space we will call this from now on the two-sets split feasibility problem). 

There we used our simultaneous multiprojections algorithm, Censor (1994) to obtain an iterative 

algorithm whose iterative step has the form  

                x k+1= A-1(I + AAT)-1(APC(xk) + AATPQ(Axk)),                                             (2.4.1) 

to solve the two-sets split feasibility problem. Here xk and xk+1are the current and the next 

iteration vectors, respectively, T stands for matrix transposition, I is the unit matrix and PC and 

PQ denote the orthogonal projections onto C and Q, respectively. 
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That solution was restricted to the case when M = N and to the feasible case, i.e., when Q⋂ A(C) 

≠∅. Byrne and Censor (2002) investigated this further. Recognizing the potential difficulties with 

calculating inverses of matrices, or equivalently, solving a linear system in each iterative step, 

particularly when the dimensions are large, Byrne (1997) devised the CQ algorithm which uses 

the iterative step 

               xk+1= PC(xk+ ߛAT(PQ - I)Axk)                                                                            (2.4.2) 

Where  ߛ ∈(2 ,0/L) and L is the largest eigenvalue of the matrix ATA. One might wonder why 

not solve one of the convex feasibility problems of finding a point in Q⋂ A(C) or of finding a 

point in C ⋂ A-1 (Q) instead of using the CQ-algorithm. 

Examples of situations when this would not be recommended can occur when, due to the 

underlying specific data of the real-world problem, it is not easy to perform projections onto the 

sets A(C) and/or A-1(Q). 

Other examples might occur when the dimensions M and N are very different from each other 

and choosing one of those convex feasibility problems would cost us in calculating projections 

for one of the sets in a much larger dimensional space than if we perform projections in each 

space separately onto the given individual sets. Similar arguments apply to the multiple-sets split 

feasibility problem. 

2.5 Cimmino's Method and the Algebraic Reconstruction Technique  

 Gerchberg (1974) opined that to illustrate the simultaneous and sequential methods just 

described, we consider the problem of solving a system of linear equations Ax = b, where A is a 

real M by N matrix. For m = 1,… ,M let am be the mth column of AT, so that 

                  bm = ⟨am, x⟩, and let Cm = {߱ |⟨am, ߱⟩ = bm}.          (2.5.1) 

Assume for notational convenience that the rows of A have length one. 



 

24 
 

Then we have 

                        PCm x = x + (bm   ⟨am; x⟩)am   . 

The simultaneous algorithm now takes the form  

                               xk+1= xk+ ଵ
ெ
∑ெ
௠ୀଵ (bm -  ⟨am, xk⟩)am 

or 

                            x k+1= xk+  ଵ
ெ	

 AT(b - Axk⟩). 

This method is sometime called Cimmino's method according to Censor and Elfving (1994). The 

sequential method has the iterative step 

                    xk+1= xk+(bm(k) - ⟨am(k), xk⟩) am(k)  for m(k) = k(modM ) + 1.  

This method, according to Byrne (2002) and Herman (1970) is called the algebraic 

reconstruction technique (ART).  It has been shown by Tanabe (1971) that the product of the 

metric projections has fixed points in this case, also confirmed by Gubin et al. (1967). 

When the system Ax = b has multiple solutions both Cimmino's method and the ART converge 

to that solution closest to the starting vector x0. 

2.6 Bandlimited Extrapolation Methods 

The bandlimited extrapolation problem as an illustration of alternating POCS, according to 

Byrne (2002), the resulting iterative algorithm is the Gerchberg-Papoulis (GP) method based on 

Gerchberg (1974)  and Rockafellar (1970). As we shall see, the method can be implemented in a 

noniterative manner, leading to more general linear and nonlinear extrapolation procedures that 

have been used for image and array processing. 

The continuous formulation of the bandlimited extrapolation problem is the following: let f (t) 

and F (߱) be a Fourier transform pair, where t and ߱ are real variables and 
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                 F(߱) =∫ ஶ(ݐ)݂
ିஶ ݁௜ఠ௧  dt,                                                                                   (2.6.1) 

                f(t) =∫ ݂(߱)ஶ
ିஶ ݁ି௜ఠ௧d߱ /2(2.6.2)                                                                            ,ߨ 

We assume that F (߱) = 0, for |߱| > ߗ,  where  ߗ	is a positive quantity. 

The function f (t) is then said to be ߗ bandlimited. If we know f (t) for t in some bounded 

interval of the real line, then these data determine F (߱) uniquely, by analyticity; the extension of 

f (t) to complex z, given by 

            f (z) =∫ ݂(߱)ஶ
ିஶ ݁ି௜ఠ௧d߱ /2(2.6.3)                   ,ߨ 

can be differentiated under the integral sign, since the limits of integration are definite. 

Therefore, the known values of f (t) determine f (z) for all other values of z; we can, in theory, 

extrapolate f outside the data window. 

In practice, we have only definitely many values of f (t) and these are typically noisy. We shall 

not address the noise problem here, except to say that it is usually handled by including 

regularization in the solving of each of the systems of linear equations we encounter in what 

follows. 

The definitely many values of if , say f (t1),…, f (tN), may be obtained at irregularly spaced 

sample points {tn } but often correspond to uniformly spaced sampling points {tn = a + n∆}, we 

consider the latter case here. 

For the remainder of this section we assume that the function F (߱) is supported on the interval 

[−Ω ,	Ω  ], for some ߨ > ߗ. The sequence of Fourier coefficients of F is denoted f. Our data are 

the Fourier coefficients f (n), for n ∈ {M; M + 1,…, N }, forming the vector d. 

For any function G(߱) let ߗG(߱) be the function that equals G(߱) for |	߱| ≤ ߗ and equals zero 

otherwise. For any sequence of Fourier coefficients g = {g(n)} let Dg denote the sequence whose 
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terms are g(n) for n ∈ {M, M + 1,… N}  and zero otherwise. Let ߟg = G be the operator taking a 

sequence of Fourier coefficients g into the function 

                    G(߱) =∑ ݃(݊)ାஶ
௡ୀିஶ  exp(in	߱ ),        for ߱ ∈ (-ߨ ,ߨ ). 

Let H = L2(-ߨ ,ߨ ), C1 = L2(−߱, ߱) and C2 be the set of all members G(߱) of H whose Fourier 

coefficients satisfy g(n) = f (n) for n = M, M +1, …, N . 

The metric projection of a function G(߱) ∈ H onto C1 is G(߱). The metric projection onto C2 is 

implemented by passing from G(߱) to the sequence of its Fourier coefficients η-1G = g, then 

replacing those coefficients for n = M, M + 1, …, N with f (n) and calculating the resulting 

Fourier series; that is, the metric projection of G onto C2 is η(Df + (I -  D)η-1G). 

We begin the GP iteration with the function F0(߱) = 0 for all ߱ ∈ ( -ߨ ,ߨ). For k = 0, 1,…, 

having calculated FK with f k its sequence of Fourier coefficients, we dene Fk+1 by 

                                           Fk+1=ᅅη (Df + (I - D)η-1Fk), 

It would appear that, in order to implement this algorithm, we must calculate the entries of the 

sequence {(I - D)η-1Fk)}for all integers n not in the set {M, M + 1, …, N }; this is not the case, 

fortunately. Note that Fk+1  - Fk=ᅅηD(f - fk) = ᅅηak where the entries of the sequence D(f - fk) 

 = ak  are zero, except for n = M,…, N. Since F0= 0 it follows that each Fk has the form Fk=ᅅηbk, 

for some sequence bk with bk (n) = 0 for n not in the set {M, M + 1,…, N }. 

From this we conclude that the limit ܨஶ has the form ܨஶ1(߱) =ᅅ ∑ ܿே
௡ୀெ n exp(in	߱), for 

appropriate  cn. The coefficients cn can then be determined by equating the Fourier coefficients of 

both sides of this equation. To do this we must solve the definite system of linear equations 

                                f (m) = ∑ ܿே
௡ୀெ n 

ୱ୧୬ ఆ(௠ି௡)
గ(௠ି௡)

,                                                             (2.6.4) 

where m = M,…, N . This, of course, can also be done iteratively, if we desire. A different 

approach is frequently used, resulting in a slightly different extrapolation. This second approach 
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formulates the problem entirely in terms of finite vectors and interprets the Fourier transform as 

a linear transformation between finite vectors, as is done with the fast Fourier transform (FFT) 

algorithm. 

From the discussion above, we see that for an arbitrary data vector d and an arbitrary choice of 

the band [-ᅅ, ᅅ] in [-ߨ ,ߨ] there is a function Fᅅ (߱) supported on [-ᅅ, ᅅ] that is consistent with 

the data in the vector d. The function Fᅅ has the form 

                  Fᅅ (߱) = ᅅ ∑ ܿே
௡ୀெ n exp(in	߱),                                                                           (2.6.5) 

The coefficients cn solve the equation (2.4.4). To perform data extrapolation one now evaluates 

the Fourier transform of Fᅅ at the desired points. Note that this method applies equally to 

uniformly and nonuniformly spaced data and is easily extended to higher dimensions. This 

noniterative implementation of the GP extrapolation is not new; it was presented in Bregman  

(1967), and has been rediscovered several times since then according to Tanabe (1971). 

The form of the estimator in equation (2.4.5) suggests an extension, called the PDFT estimator, 

involving the use of a prior estimate, P (߱) ≥ 0, of the magnitude function |F (߱)|. Suppose now 

that the data that comprise the vector d are the values f (tn), n = 0, 1,…,N , for some possibly 

nonequispaced points tn. The PDFT estimate, FPDFT (߱), has the form  

         FPDFT(߱) = P (߱)	ܽn exp(itn߱),                                                                               (2.6.6) 

where the coefficients an solve the system of equations Pa = d, with P the matrix whose entries 

are p(tm -  tn), the Fourier transform of P (߱) evaluated at the points tm -   tn, m, n = 1,…, N . 

This estimate, which can also be viewed as a data extrapolation method, was first discussed 

according to Byrne (1995). The PDFT was applied to image processing by Byrne (1997) and to 

phase retrieval by the same person Byrne (1998). Variants of the PDFT those are nonlinear in the 

data and related to maximum entropy and maximum likelihood estimation were discussed 
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extensively by Gordon  et al. (1970). The PDFT estimate of F is the unique function G consistent 

with the data that minimizes the weighted energy 

																																												∫ |G(߱)|2 P(߱)-1d	߱.                                                               (2.6.7) 

If the data are equispaced and = then the PDFT becomes the well-known discrete time Fourier 

transform (DFT). The PDFT can be implemented iteratively by discretizing the function to be 

estimated and representing the Fourier transform by means of a matrix. 

The prior P (߱) then becomes a finite vector of eights. The ART method can then be used to 

calculate a minimum weighted norm solution. This approach is particularly useful for large data 

sets encountered in image reconstruction. 

2.7 The Landweber algorithms 

It is easy to find important examples of the SFP: Anderson and Kak (1984), if C ⊆ ℝ N and 

 Q = {b} then solving the SF P amounts to solving the linear system of equations Ax = b; if C is 

a proper subset of RN, such as the nonnegative cone, then we seeks solutions of Ax = b that lie 

within C, if there are any. 

The SFP is currently of some interest in dynamic PET medical image reconstruction, for reasons 

discussed in detail by Byrne (2002). Generally, we cannot solve the SFP in closed form and 

iterative methods are needed. 

A number of well-known iterative algorithms, such as the Landweber (1951) i.e. With x0 

arbitrary and k = 0,1,… let  

                             xk+1= xk+ ߛAT(b - Axk),                                                       (2.7.1) 

and projected Landweber methods  in its own  case: For general nonempty closed convex set C 

we obtain the projected Landweber method for finding a solution of Ax = b in C: For x0 arbitrary 

and k = 0, 1,…, let 
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           xk+1= PC(xk + ߛAT(b - Axk)),                                                                         (2.7.2) 

are particular cases of the CQ algorithm. From the convergence theorem for the CQ algorithm it 

follows that the Landweber Algorithm converges to a solution of Ax = b and the projected 

Landweber algorithm converges to a solution of Ax = b in C, whenever such solutions exist. 

When there are no solutions of the desired type, the Landweber algorithm converges to a least 

squares approximate solution of Ax = b, while, by corollary (4.1.1), the projected Landweber 

method will converge to a minimizer, over the set C, of the function   �b - Ax�, whenever such 

a minimizer exists. The GP iterative procedure for bandlimited extrapolation and super-

resolution is an example of the Landweber algorithm. 

Another example of the Landweber method is the simultaneous algebraic reconstruction 

technique (SART), as narrated by Byrne and Censor (2001) for solving Ax = b, for nonnegative 

matrix A. Let A be an M by N matrix with nonnegative entries. Let Ai+ > 0 be the sum of the 

entries in the ith row of A and A+j > 0 be the sum of the entries in the jth column of A. Consider 

the (possibly inconsistent) system Ax = b.  

The SART algorithm has the following iterative step: 

                xj k+1= xj
k  + ଵ

஺ା௝
 ∑ெ

௜ୀଵ (bi - (Axk)i)/Ai+.                                                                                            (2.7.3) 

We make the following changes of variables:  

                   Bij = Aij /(Ai+)1/2 (A+j)1/2, 

                    Zj = xj(A+j)1/2                          and  ci = bi/(Ai+)1/2 . 

Then the SART iterative step can be written as 

             zk+1= zk+ BT(c - Bzk).                                                                            (2.7.4)    This is a 

particular case of the Landweber algorithm, with 1 = ߛ. The convergence of SART follows from 
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theorem 3.1.1, once we know that the largest eigenvalue of BTB is less than two; in fact, it is 

shown to be one by De pierro (1991). 

2.8 The Geometric Properties of Banach Spaces and Nonlinear Iterations  

According to Trieste, Hilbert spaces have the nicest geometric properties, among all infinite 

dimensional Banach spaces. The availability of the inner product, the fact that the proximity map 

or nearest point map of a real Hilbert space H on to a closed convex subset K of H Lipschitzian 

with constant 1, and the following two identities 

                               �x + y�2= �x�2+ 2⟨x- y⟩ + �y�2,                                                                    

(2.8.1) 

                               ,�x- y�2 (ߣ	-1)ߣ     �y�2 (ߣ	-1) + �x�2ߣ = y�2(ߣ	-1) + x ߣ	�                               

(2.8.2) 

Which hold for all x, y ∈ H, are some of the geometric properties that characterize inner product 

spaces and also make certain problems posed in Hilbert spaces more manageable than those in 

general Banach spaces. However, as has been rightly observed by Papoulis (1975), ‘... many, and 

probably most, mathematical objects and models do not naturally live in Hilbert spaces’. 

Consequently, according to Aubin (1993) to extend some of the Hilbert spaces techniques to 

more general Banach spaces, analogues of the identities (2.8.1) and (2.8.2) have to be developed. 

For its development, the duality map which has become a most important tool in nonlinear 

functional analysis plays a central role.  Byrne and Fiddy (1987), obtained the following 

analogue of (2.8.1) 

 for lP spaces, l < p < ∞. 

                                           � x + y�2 ≤	(p- 1) �x�2+ �y�2+ 2⟨x, j(y)⟩,  2	≤  p <	∞, 

                                         (p - 1) �x + y�2 ≤ �x�2+ �y�2+ 2h⟨x,  j(y)⟩,   1	≤ p < ∞, 



 

31 
 

Analogues of (2.8.2) were also obtained by Bynum. Zeidler (1990), obtained an analogue of 

(2.8.1) in uniformly smooth Banach spaces. 

 A point x ∈ K is said to be a fixed point of T if T x = x. Now, consider the differential equation 

du/dt + Au(t) = 0 which describes an evolution system where A is an accretive map from Banach 

space E to itself. In Hilbert spaces, accretive operators are called monotone. 

At equilibrium state, du/dt = 0 and so a solution of Au = 0 describes the equilibrium or stable 

state of the system. This is very desirable in many applications in, for example, ecology, 

economic, physics, to name a few. 

Consequently, considerable research efforts have been devoted to methods of solving the 

equation Au = 0 when A is accretive. Since generally A is nonlinear, there is no closed form 

solution of this equation. The standard technique is to introduce an operator T defined by 

 T: = I- A where I is the identity map on E. Such a T is called a pseudo - contraction (or is called 

pseudo – contractive), by Byrne and Fitzgerald (1983). It is then clear that any zero of A is a 

fixed point of T. 

As a result of this, the study of fixed point theory for pseudo-contractive maps has attracted the 

interest of numerous scientists and has become a flourishing area of research, within a long 

period of time, for numerous mathematicians. A very important subclass of the class of pseudo-

contractive mappings is that of nonexpansive mappings. Where T: K → K is called nonexpansive 

if                      �T x - T y� ≤ �x - y�  

holds for arbitrary x, y ∈ K. Apart from being an obvious generalization of the contraction 

mappings.  Nonexpansive maps are important, as has been observed by McLachlan (1970), 

mainly for the following two reasons: 
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(i)  Nonexpansive maps are intimately connected with the monotonicity methods 

developed since the early 1960's and constitute one of the first classes of nonlinear 

mappings for which fixed point theorems were obtained by using the ne geometric 

properties of the underlying Banach spaces instead of compactness properties. 

(ii)  Nonexpansive mappings appear in applications as the transition operators for initial 

value problems of differential inclusion of the form 0 ∈ du/dt + T (t)u, where the 

operators {T(t)} are, in general, set-valued and are accretive or dissipative and 

minimally continuous. 

If K is a closed nonempty subset of a Banach space and T: K→ K is nonexpansive, it is known 

that T may not have a fixed point (unlike the case if T is a strict contraction), and even when it 

has, the sequence {xn} defined by xn+1 = Txn , n≥ 1 (the so-called Picard sequence) may fail to 

converge to such a fixed point. This can be seen by considering an anticlockwise rotation of the 

unit disc of ℝ2 about the origin through an angle of say, గ
ସ
. This map is nonexpansive with the 

origin as the unique fixed point, but the Picard sequence fail to converge with any starting point 

x 0 ≠ 0. Krasnosel'skii, however, showed that in this example, if the Picard iteration formula is 

replaced by the following formula.       x0 ∈ K, xn+1 =ଵ
ଶ
(xn + Txn),                     n	≥ 0    (2.8.3) 

Then the iterative sequence converges to the unique fixed point. In general, if E is a normed 

linear space and T is a nonexpansive mapping, the following generalization of (1) which has 

proved successful in the approximation of a fixed point of T (when it exists) was given by 

Censor et al. (1998).   x0 ∈ K, xn+1 = (1- λ)xn + λTxn), n ≥ 0,  λ	∈ (0, 1)                      (2.8.4) 

However, the most general iterative formula for approximation of fixed points of nonexpansive 

mappings, which is called the Mann iteration formula (in the light of Mann by Byrne (1999)), is 

the following:  x0 ∈ K, xn+1 = (1- ߛn)xn + ߛnTxn),  n	≥  0,                                                      (2.8.5) 
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where {ߛn} is a real sequence in the interval (0,1) satisfying the following conditions:   

(i) lim λn= 0 

(ii) ∑ஶ
௡ୀଵ λn =  ∞ 

The recursion formula (2.8.4) is consequently called the Krasnoselskii Mann (KM) formula for 

finding fixed points of ne (nonexpansive) mappings. The following quotation indicates part of 

the interest in iterative approximation of fixed points of nonexpansive mappings. 

Many well-known algorithms in signal processing and image reconstruction are iterative in 

nature.  A wide variety of iterative procedures used in signal processing and image 

reconstruction and elsewhere are special cases of the KM iteration procedure, for particular 

choices of the ne operator according to Youla (1987). 

The study of the Krasnoselkii-Mann iterative procedures for the approximation of fixed points of 

nonexpansive mappings and fixed points of some of their generalizations, and approximation of 

zeros of accretive-type operators have been a flourishing area of research for many 

Mathematicians. 

2.9 Interior point optimization algorithms 

The entropy-based methods discussed in the previous section are interior point methods in that 

the vectors that occur in the calculations always lie within the positive cone of ℝJ, Byrne (2001). 

A more general method of this sort is the interior point algorithm (IPA) by Bertsekas (1997). 

 The IPA is designed to minimize a convex differentiable function f over the domain of a second 

convex differentiable function h. The iterative step of the IPA is to solve 

                   ∇h(xk+1) = ∇h(xk) - ∇ߛf (xk),      for xk+1,                                                        (2,9.1) 

 where 0 < ߛ is chosen so that the function  h -ߛf is convex. Note the similarities between this 

iterative step and the iterative step xk+1= PC(xk - ߛ∇f(xk)) of the algorithm we considered earlier. 
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Other conditions are required for convergence as discussed by Byrne (2001). Applications of the 

IPA to medical imaging were discussed by Leahy and Byrne (2000). 

                                                                Chapter Three 

                              SOME NONLINEAR OPERATORS AND THEIR RELATIONS 

3.1 Introduction 

An operator N on Hilbert space H is called nonexpansive ne if x, y ∈ H such that �Nx - Ny� 

	≤ �x - y�. As we shall see, the fact that a ne operator N has fixed points is not sufficient to 

guarantee convergence of the orbit sequence {Nkx}, additional conditions are needed. An 

operator S on H is said to be a strict contraction (sc) if there is a ߪ ∈ (0,1) such that, for all 

 x, y ∈	H, 

                                   �Sx -  Sy� ≤  ߪ�x -  y� 

the well-known Banach-Picard's theorem by Vardi et al. (1985) assures us that the operator S has 

a unique fixed point, to which the orbit sequence {S kx} converges, for any starting point xo. 

Requiring the operator to be a sc is quite restrictive; most of the operators we are interested in 

here have multiple fixed points, so are not sc. The Krasnoselskii-Mann (KM) theorem suggests 

strongly that we should concentrate on average  av operators. An operator A is called average if 

there is ∋ ߙ	(1 ,0) and ne operator N such that 

                                   A = (1- ߙ)I + ߙN. 

An operator G on H is called v-inverse strongly monotone v - ism (also called co-coercive) if 

there is v > 0 such that, 

      ⟨Gx – Gy, x - y⟩	≥  v�Gx - Gy�2, according to Byrne (1995)                                          (3.1.1) 
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Theorem 3.1.1 If the complement of operator N denoted by G = I- N is ଵ
ଶ
 - ism then, the main 

operator is ne 

Proof 

                             ⟨Gx – Gy, x - y⟩ ≥ ଵ
ଶ
 �Gx - Gy�2 

                             ⟨Gx – Gy, x - y⟩ -	ଵ
ଶ
 �Gx - Gy�2≥ 0 

                                     2⟨(I - N)x - (I - N)y, x - y⟩ - �(I - N )x - (I - N )y�2	≥ 0 

                                              2⟨x - Nx - y + Ny, x - y⟩ - �x- Nx -  y + Ny�2 ≥ 0 

                                                                                  2⟨Ny- Nx + x -  y, x -  y⟩ 

                                                            - ⟨Ny -  Nx + x -  y, Ny -  Nx + x- y   ≥0 

                                                                        2⟨Ny -  Nx, x -  y + x -  y, x -  y⟩ 

     −⟨Ny -  Nx, Ny -  Nx + Ny -  Nx, x -  y +Ny -  Nx, x -  y + x -  y, x -  y⟩  ≥	0 

                                                                     2(⟨Ny -  Nx, x -  y⟩ + ⟨x -  y, x -  y⟩) 

 - ⟨Ny -  Nx, Ny -  Nx⟩ -  ⟨Ny -  Nx, x -  y⟩- ⟨Ny -  Nx, x -  y⟩ -  ⟨x -  y, x -  y⟩ ≥  0 

          2⟨Ny -  Nx, x -  y⟩ + 2�x -  y�-�Ny -  Nx�2 - 2⟨Ny -  Nx, x -  y⟩ -  �x -  y�2	≥0 

                                                                                         �x -  y�2 - �Ny -  Nx�2≥0 

                                                                                               �Ny -  Nx� ≤ �x -  y� 

Theorem 3.1.2 If G is v- ism and 0 < ߛ then the operator   ߛG is v-ism 

Proof  

let 

⟨Gx – Gy, x - y⟩ ≥ v�Gx - Gy�2   hold: 

But 
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 Gx – Gy, x – y⟩ߛ = ⟨Gy, x - yߛ – Gxߛ⟩                                    

 ≥ 0	v�Gx   Gy�2ߛ - ⟨Gy, x - yߛ – Gxߛ⟩					                                   

v�ଵ ߛ  - ⟨Gx -  Gy, x -  y⟩ ߛ                
ఊ
 x ߛ Gx -   			ଵ

ఊ
 x ߛ Gy�2 ≥ 0 

௩	ఊ		  - ⟨Gx -  Gy, x -  y⟩ ߛ                                   
ఊଶ

 �Gx -  Gy�2 ≥ 0 

௩			  - ⟨Gx -  Gy, x -  y⟩ ߛ                                     
ఊ

 �Gx -  Gy�2  ≥ 0 

Theorem 3.1.3  

   Let N be a ne operator on H. For k = 0,1,…   let ߙ k ∈ (0, 1). Then the sequence {xk} defined by 

the iterative scheme xk+1 = (1-	ߙk)xk + ߙkNxk, converges weakly to a fixed point of N, provided  

∑ஶ
௞ୀ଴  .whenever such fixed points exist ,∞+ = (kߙ	-1)

An operator G : H → H is monotone in De pierro (1991) if, for all x, y ∈ H  such that  

                                    ⟨Gx -  Gy, x -  y⟩   ≥	 0                                                            (3.1.2) 

to illustrate, suppose that g is a convex, differentiable real-valued function on H.  

Then  

                    ⟨∇g(y), x - y⟩	≤ g(x) -  g(y) 

 and             ⟨∇g(x), y-  x⟩   ≤  g(y) -  g(x)  

                       - ⟨−∇g(y), x - y⟩≤ g(x)   g(y) 

                      -  ⟨∇g(x), x - y⟩≤ g(y)-   g(x) 

                       - ⟨∇g(x) - ∇g(y), x-   y⟩ ≤ 0 

                          		⟨∇g(x) - ∇g(y), x - y⟩≥ 0 

Therefore is established that the derivative of convex function g is a monotone operator. If ĉ 

minimizes the function g over the closed convex set C, then   ⟨∇g(ĉ),c - c⟩≥ 0      for all c ∈ C. 
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 For general monotone operator G the variational inequality problem (VIP) with respect to G and 

C, denoted VIP (G, C), is to find  ĉ ∈ C with  ⟨∇g(ĉ),c - ĉ ⟩≥ 0 for all c ∈ C according to Youla 

(1987). Subject to certain restrictions on G and ߛ, the sequence denoted by the iterative step                   

                       x k+1= PC(I - ߛG)xk 

will converge to a solution of the VIP (G; C), if solutions exist. For each x ∈ H the metric 

projection PCx is that member of C closest to x and is characterized as the unique element of C 

for which 

⟨c -  PCx, PCx -  x⟩ ≥	0   for all c  ∈ C. Therefore ĉ = PC (ĉ   G ĉ) if and only if 

            ⟨c - ĉ, ĉ - (ĉ -  G ĉ) ⟩ = ߛ⟨c -  ĉ, G ĉ ⟩ ≥ 0;  

To see this, since  ĉ = PC(I - ߛG) ĉ, 

 then   ⟨c - ĉ, ĉ - (ĉ -  G ĉ) ⟩ = ߛ⟨c -  ĉ, G ĉ ⟩ ≥ 0,  

Becomes 

            ⟨c - PC(I - ߛG) ĉ, PC(I - ߛG) ĉ - (PC(I - ߛG) ĉ - ߛG)ĉ) ≥  0 

                                                        ⟨ܿ - PC(I - ߛG)ĉ, - ߛG)ĉ ⟩≥  0 

                                                                          ⟨ܿ- ĉ, - ߛG)ĉ ⟩≥  0 

 ∈ C	0    ∀ c  ≤⟨ĉ, - G)ĉ -ܿ⟩ߛ                                                                           

Consequently, the vector ĉ solves the VIP (G, C) if and only if ĉ is a fixed point of the operator 

PC(I - ߛG). This is the motivation for considering the iteration xk+1 PC(I - ߛG)xk. 

As we shall see now, in seeking fixed points for an operator T it is helpful to consider properties 

of its complement, I - T.          

  The following identity relates an operator T to its complement G = I – T, 

         � x -  y�2 - �T x -  Ty�2 = 2⟨Gx -  Gy, x -  y⟩ - �Gx -  Gy�2                             (3.1.3)    
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This can be seen as follows, let G = I - T then taking the right hand side become, 

       2⟨Gx - Gy, x -  y⟩ -  �Gx  - Gy�2 

                                  = 2⟨ (I -  T )x -  (I  - T )y, x -  y⟩ -  � (I - T )x -  (I  - T )y�2 

                                  = 2⟨x - T x -  y + T y, x  - y⟩ -  (⟨x - T x  - y + T y, x -  T x -  y + T y⟩) 

                                  = 2 (⟨T y  - T x, x -  y⟩ + ⟨x -  y, x -  y⟩) -[⟨T y -  T x, T y -  T x⟩ 

                                  + ⟨T y -  T x, x -  y⟩ + ⟨T y  - T x, x  - y⟩ + ⟨x -  y, x -  y⟩] 

                                 = 2⟨T y -  T x,  x -  y⟩ + 2�x -  y�2 - �T x -  T y�2 - 2⟨T y -  T x,  x -  y⟩ -  

�x -  y�2 

                               = �x - y�2   - �T y - T x�2 

                               = � x - y�2   - �T x - T y�2 

Hence: 

                                �x -  y�2 - �T x -  T y�2 = 2⟨Gx -  Gy, x -  y⟩ -  �Gx   Gy�2. 

Lemma 3.1.4 Let Q be av and N be ne. Then operator T defined by T = (1- ߙ)Q + ߙ N is av for 

some ߙ ∈ (0, 1). 

Proof Let Q = (1-ߚ )I +ߚM for some ߚ ∈ (0; 1) and ne operator M. Let 1- -1)(ߙ -1) = ߛ	(ߚ. Then 

we have 

             T = (1- ߙ)[(-1	ߚ)I +	ߚM] + ߙ N 

 N ߙ	+ Mߚ(ߙ -1)  + I(ߚ	-1) (ߙ -1) =                 

 [ 1N-ߛ ߙ	1M +1-ߛ ߚ(ߙ -1)]ߛ + I(ߛ	-1) =                 

 ;Uߛ + I(ߛ	-1) =                 

where U =[(1- ߙ)1-ߛ ߚM +1	1-ߛ ߙN]: 

Since the operator U = [(1- ߙ)1-ߛ ߚM +1	1-ߛ ߙN] is easily shown to be ne and the convex 

combination of two ne operators is again ne, T is av. 
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To see that U =[(1- ߙ)1-ߛ ߚM +1	1-ߛ ߙN] is ne operator i.e.  

             �Ux - Uy�	≤ �x -  y� 

         but        1- -1)(ߙ -1) = ߛ	(ߚ 

  ߚߙ+(ߚ	- ߙ -1) = ߛ -1

 ߚߙ-ߚ	+ ߙ = ߛ

we compute this as follows 

 �Ux -  Uy�  

 �y[1N-ߛ ߙ	+ 1M-ߛ ߚ(ߙ -1)] - x[1N-ߛ ߙ	+ 1M-ߛ ߚ(ߙ -1)] � =                   

 � 1N(y)-ߛ ߙ	- 1M(y)-ߛ ߚ(ߙ -1) - 1N(x)-ߛߙ	+ 1M(x)-ߛ ߚ(ߙ -1) � =                   

 �1N(y)-ߛ(ߙ	 - 1N(x)-ߛߙ� +� 1M(y)-ߛߚ(ߙ -1) - 1M(x)-ߛߚ(ߙ -1) � ≥                   

 �1N(y)-ߛ(ߙ	 - 1�N(x)-ߛߙ +� 1�M(x) - M(y)-ߛߚ(ߙ -1) ≥                   

 �x - y �1-ߛߙ + 1-ߛߚ(ߙ -1)] =                   

 �x - y �ߙ + ߚ(ߙ -1)] 1-ߛ	=                   

                   ≤ 	[(ଵି	ఈ)ఉ	ା	ఈ‖	୶	ି	୷‖
ఊ

 

                   = [(ଵି	ఈ)ఉ	ା	ఈ‖	୶	ି	୷‖
ఈ	ା	ఉିఈఉ

 

                  =�x -  y� 

                  	⇒�Ux -  Uy�	≤ �x -  y� 

Lemma 3.1.5 An operator A is av if and only if its complement  

                   G = I - A is v - ism for some v > ଵ
ଶ
 

Proof   We assume first that A is av. Then there is  ߙ ∈ (0, 1) and ne operator N such that  

                   A = (1-	ߙ )I + ߙN ,  
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and so G = I - A =	ߙ (I - N). Since N is ne, I - N is ଵ
ଶ
 - ism and G =	ߙ (I - N) is  ଵ

ଶఈ
 - ism. 

Conversely, assume that G is v - ism for some v > ଵ
ଶ
. 

 Let ߙ = ଵ
ଶ௩

  and write A = (1-	ߙ)I + ߙN for N = I - ଵ
ఈ

 G. Since I - N = I - ଵ
ఈ

 G, I - N is ߙv - ism. 

Consequently I - N is  ଵ
ଶ
 - ism and N is ne. Therefore, A is av. 

3.2  Firmly nonexpansive operators 

 Proposition 3.2.1 If operator F on H is firmly nonexpansive fne then, the relation 

 �Fx  - Fy�2 = ⟨Gx -  Gy, x -  y⟩ -  �Gx  - Gy�2        (3.2.1)  - ⟨x -  Fy, x -  yܨ⟩                    

hold where G = I – F. 

Proof    Let G = I - F  

 Then 

                 ⟨Gx -  Gy, x -  y⟩ -  �Gx  - Gy�2  

                                                    =⟨ (I – F) x - (I – F)y, x -  y⟩ -  �(I – F)x  - (I – F)y�2 

                                  = ⟨x -  F x -  y + F y, x -  y⟩  - ⟨x -  F x -  y + F y, x -  F x -  y + F y⟩ 

                                  = ⟨Fy -  F x + x -  y, x -  y⟩ -  ⟨F y -  F x + x -  y, F y -  F x + x -  y⟩ 

                                  ≤ ⟨F y -  F x, x -  y + ⟨x -  y, x -  y⟩ -  ⟨F y -  F x, F y -  F x⟩ 

                                       - ⟨F y -  F x, x -  y⟩ -  ⟨F y -  F x, x -  y⟩ -  ⟨x -  y, x  - y⟩ 

                                  ≤ ⟨F y -  Fx, x -  y⟩ + �x -  y�2 - �F y -  F x�2 - 2⟨F y -  F x, x -  y⟩ -  �x -  

y�2 

                                   ≤ �F y -  F x�2 + ⟨F y -  F x, x -  y⟩ 

This implies that ⟨F x-  F y, x -  y⟩ - �F y -  F x�2, and the relationship is established. 
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Lemma 3.2.2 If the complement of operator F is fne then, the operator is fne. 

Proof 

 Assume the complement of F  fne, then  

                                                                    ⟨ (I – F) x - (I – F)y, x -  y⟩ -  �(I – F)x  - (I – F)y�2 ≥ 

0 

                                            ⟨x -  F x -  y + F y, x -  y⟩  - ⟨x -  F x -  y + F y, x -  F x -  y + F y⟩	≥ 0 

                                            ⟨Fy -  F x + x -  y, x -  y⟩ -  ⟨F y -  F x + x -  y, F y -  F x + x -  y⟩  ≥ 0 

                                                                                                      ⟨F y -  F x, x -  y + ⟨x -  y, x -  y⟩ 

                     - ⟨F y -  F x, F y -  F x⟩ - ⟨F y -  F x, x -  y⟩ -  ⟨F y -  F x, x -  y⟩ -  ⟨x -  y, x  - y⟩ ≥ 0 

                                   ⟨F y - Fx, x - y⟩ + �x -  y�2 - �F y -  F x�2 - 2⟨F y -  F x, x -  y⟩ -  �x -  

y�2  ≥ 0 

                                                                                                   - ⟨F y - F x, x - y⟩- �F y - F x�2  ≥ 

0 

                                                                                                         ⟨F y - F x, x - y⟩ ≥ �F y -  

Fx�2 

Hence, An operator F is fne if its complement I - F is fne. 

 

Lemma 3.2.3 If F is fne then F is av. 

Proof  

For any operator F with G = I - F we have by proposition 3.2.1 
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                              �Fx  - Fy�2 = ⟨Gx -  Gy, x -  y⟩ -  �Gx  - Gy�2  - ⟨x -  Fy, x -  yܨ⟩

The left-hand side is nonnegative if and only if the right-hand side is. Finally, 

If F is fne then I - F is fne, so I- F is v- ism for v = 1.  

Therefore F is av by Lemma 3.1.5 

Corollary 3.2.4  

Let T = (1- ߙ)F + ߙ N for some  (1 ,0) ∋ ߙ. If F is fne and N is ne then T is av. 

Proof  Since the metric projection of x onto C is characterized by the inequality 

              ⟨c -  PCx, PCx -  x⟩ ≥	0   for all c  ∈ C, 

 we have  

                         ⟨PCy -  PCx, PCx -  x⟩ ≥	 0          (3.2.2) 

and  

                      ⟨PCx -  PCy, PCy -  y⟩ ≥	 0         (3.2.3) 

Adding, 3.2.2 and 3.2.3 we get 

                                    ⟨PCx -  PCy, PCy -  PCx + x -  y⟩ ≥	 0    

             ⟨PCx -  PCy, PCy -  PCx ⟩+  ⟨PCx -  PCy , x -  y⟩ ≥	 0 

            - ⟨PCx -  PCy, PCx -  PCy ⟩+  ⟨PCx -  PCy , x -  y⟩ ≥	 0 

                    ⟨PCx -  PCy , x -  y⟩ ≥	 ⟨PCx -  PCy, PCy -  PCx ⟩ 

                     ⟨PCx -  PCy , x -  y⟩ ≥	 �PCx -  PCy�2 

the operator PC is fne, and therefore also av. 

The product of finitely many ne operators is again ne, while the product of finitely many fne 

operators, even metric projections, need not be fne. It is a helpful fact that the product of finitely 

many av operators is again av. If A = (1- ߙ)I +	ߙN is av and B is av then T = AB has the form  

 T = (1)B + NB. 
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Since B is av and NB is ne, it follows from Lemma 3.1.5 that T is av. Summarizing, we have 

Proposition 3.2.5 

 If A and B are av, then T = AB is av. Combining this proposition with Theorem 3.1.3 we obtain 

Dolidze's theorem by Chidume (1963). 

Theorem 3.2.6 Let G be v - ism and ߛ	∈ (2 ,0v). Then, for any x, the sequence {(PC(I - ߛG))kx} 

converges weakly to a solution of   VIP(G, C),whenever solutions exist. 

Proof   Since the operator ߛG is  ଵ
ଶఈ

 - ism then, its complement (I - ߛG) also PC are av and for the 

fact that, the product of finitely many ne operators is again ne then PC(I - ߛG) is av. It is possible 

for Fix(AB) to be nonempty while Fix(A) ⋂ Fix(B) is empty; 

However, if the latter is nonempty, it must coincide with Fix(AB) as discussed by Berterro and 

Boccacci (1998). 

Proposition 3.2.7 Let A and B be av operators and suppose that 

Fix(A) ⋂ Fix(B) is nonempty. Then Fix(A) ⋂ Fix(B) = Fix(AB) = Fix(BA). 

Proof  

Let I - A be vA - ism and I - B be vB - ism, where both vA and vB are taken greater than ଵ
ଶ
. 

 Let z be in Fix (A) ⋂ Fix (B) and x in F ix(BA).  

Then 

           �z -  x�2 ≥ �z - A x�2+ (2vA - 1) �Ax - x�2 

                                   ≥ �z - BAx�2+ (2vB - 1) �BAx - Ax�2 + (2vA - 1) �Ax - x�2 

                                   = �z - x�2 + (2vB -1) �BAx - Ax�2 + (2vA - 1) �Ax - x�2 

Therefore �Ax - x� = 0 and �BAx - Ax� = �Bx - x� = 0. 

If A1,…, AM are av operators, then so are the operators A =ଵ
ெ
∑ ெܣ
௠ୀ m  and B = AM AM -1 … A1. 

The orbit sequence  {Akx} will converge weakly whenever Fix(A) is nonempty; such an iterative 
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scheme is sometime called a simultaneous method If the operators Am have common fixed 

points, then the orbit sequence {Bkx} will converge weakly to such a common fixed point; such 

methods are sometimes called sequential methods. 

If Fix(B) is nonempty, but the Am have no common fixed point, then the sequence {Bkx} 

converges to a fixed point z0  such that, with z1=A1z, z2= A2z-1,…, zM -1= AM-1zM -2, we have  

AM zM- 1= z0. Such a set of M vectors is called a limit cycle. 

3.3 Prototype of a strongly attracting mapping 

Lemma 3.3.1 Suppose D is a closed convex nonempty set, T: D → D be firmly nonexpansive 

with fixed points, and  

ߙ  ∈ (0, 2), R := (1- ߙ)Id + ߙT and fix x ∈  D, f ∈ Fix T, then 

(i) Fix R = Fix T 

(ii) ⟨x – f, x - Tx⟩ ≥  � x - Tx�2 and ⟨x – Tx, Tx – f ⟩ ≥  0 

(iii) � x – f �2   - �R x –f �2= 2ߙ⟨x – f, x - Tx⟩- 2ߙ� x - Tx�2 

(iv) R is (2- ߙ)/ߙ-acttracting: � x – f �2   - �R x –f �2	≥ (2- ߙ)/ߙ �R x –f �2   =   (2- ߙ)/ߙ �x –Tx 

�2       

Proof . 

(i) is immediate 

(ii) since T is firmly nonexpansive, we obtain 

                �Tx – f �2  ≤ ⟨Tx – f, x – f ⟩ 

             ⟺�Tx – f �2  ≤ ⟨Tx – f, x – f ⟩- 2ߙ� x - Tx�2 

             ⟺�Tx – x�2+�x –f �2 +2⟨Tx – x, x – f ⟩ ≤ ⟨Tx – f, x – f ⟩ 

             ⟺�Tx – x�2  ≤ ⟨x - Tx, x – f ⟩= ⟨x –Tx,( x-Tx)+(Tx- f) ⟩ 

0 ≤ ⟨x-Tx – f, Tx – f ⟩ 
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(iii) Is a direct calculation  

  � x – f �2   - �Rx –f �2    

                      = � x – f �2   - �(1- ߙ)(x –f ) +ߙ(Tx –f �2   

                      = � x – f �2   - [(1- ߙ)�(x –f ) �2 +2ߙ�Tx –f �2  + 2	(ߙ -1)ߙ⟨x –f, Tx – f ⟩] 

 ⟨ x –f, Tx – f⟩ߙ2- ⟨ x –f, Tx – f⟩2ߙ2�Tx –f �2+ 2ߙ	 - 2�x –f �2ߙ - x – f �2 �ߙ2 =                      

 �x –f �2 + �Tx –f �2 - 2⟨x –f, Tx]2ߙ - ⟨ x –f, Tx – f⟩ߙ2- ⟨x –f, (x-f) - (Tx – f )⟩ߙ2 =    

– f ⟩] 

 .2�x –Tx �2ߙ - ⟨x –f, x- Tx⟩ߙ2 =    

 

 (iv): By (ii), (iii) and the definition of R, we get 

                                             � x – f �2   - �R x –f �2= 2ߙ⟨x – f, x - Tx⟩- 2ߙ� x - Tx�2 

 x - Tx�2 �2ߙ - x - Tx�2 �ߙ2≤                                                                            

 x - Tx�2 �(ߙ -2)ߙ =                                                                            

 x – Rx�2 �ߙ/(ߙ -2) =                                                                            

Note that (i) and (ii) are actually true for an arbitrary nonexpansive mapping T: this will, 

however, not be needed in what follows. Since projections are firmly nonexpansive, we 

immediately obtain the following result, 

Corollary 3.3.2  If P is the projection onto some closed convex nonempty set S and ߙ ∈ (0, 2), 

then R := (1- ߙ)Id + ܲߙ is(1-α)/α- attracting w.r.t. S for x ∈ X, s ∈ S,   

               � x – s �2   - �R x –s �2 ≥ (2- ߙ)d2  (x, s) 
 

3.4 A system of generalized equilibrium problems 

According to Stark and Yang (1998). Let H be a real Hilbert space with inner product < ., .> and 

norm ‖.‖, respectively and let C be a closed convex subset of H. Let F be a bi-function from C x 
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C into the set of real number ℝ. Let A: C → H be a nonlinear mapping. Then, we consider the 

following equilibrium problem; Finding z ∈ C such that  

        F (z, y) + ⟨Az, y - z⟩ ≥ 0,    ∀ y ∈ C                                                                (3.4.1) 

The set of such z ∈ C is denoted by EP i.e 

 EP = {z ∈ C: F (z, y) + ⟨Az, y -  z⟩ ≥ 0,    ∀ y ∈ C} 

 If A≡ 0, EP is denoted by EP (F) 

 If F ≡0, EP is denoted by VIP(C, A), 

where A: C → H is also an inverse-strongly monotone mapping and then obtain a strong 

convergence theorem. 

 let F1, F2: C x C  → R be two monotone bi-function and ߣ, ߤ ≥ 0 be two constants, then by 

Narayanan et al. (2001). 

let A1, A2 → H be  ߙ-inverse-strongly monotone and  ߚ - inverse-strongly monotone, respectively 

we consider the following problem for finding. 

(x*,y*) ∈	C x C ∋ 

         F1(x*, z) + ⟨A1y*, z – x*⟩ + భഊ⟨z – x*, x*- y*⟩≥ 0,    ∀ z ∈ C 

        F2(y*, z) + ⟨A2x*, z – y*⟩ + భഋ⟨z – y*, y*- x*⟩≥ 0,    ∀ z ∈ C                                          (3.4.2) 

which is called a system of generalized equilibrium problems, in particular 

If λ = ߤ and A1, A ≡ 0, then (3.2.2) reduces to finding (x*,y*) ∈	C x C ∋ 

         λF1(x*, z) + ⟨z – x*, x*- y*⟩ ≥ 0,    ∀ z ∈ C 

        λ F2(y*, z) + ⟨z – y*, y*- x*⟩	≥ 0,    ∀ z ∈ C                                                                   (3.4.3) 

moreover, if F1,  F2  ≡  0 then the problem (3.4.3) reduces to finding  (x*,y*) ∈	C x C ∋ 

         ⟨A1y*, z – x*⟩ + భഊ⟨z – x*, x*- y*⟩≥ 0,    ∀ z ∈ C 

         ⟨A2x*, z – y*⟩ + భഋ⟨z – y*, y*- x*⟩≥ 0,    ∀ z ∈ C                                                             (3.4.4) 
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which implies that 

           ⟨A1y*, z – x*⟩ + భഊ⟨x* - y*, z – x* ⟩≥ 0,    ∀ z ∈ C 

          ⟨A2x*, z – y*⟩ + భഋ⟨ y* - z*, z- y* ⟩≥ 0,    ∀ z ∈ C                                                          (3.4.5) 

Then 

          ⟨A1y* + భഊ (x*- y*), z – x* ⟩≥ 0,    ∀ z ∈ C 

         ⟨A2x*+  భഋ ( y*-z*), z - y* ⟩	≥ 0,    ∀ z ∈ C                                                                     (3.4.6) 

Hence 

          ⟨ λ A1y* + (x*- y*), z – x* ⟩≥ 0,    ∀ z ∈ C 

                             0,    ∀ z ∈ C                                                                  (3.4.7) ≤	⟨ *A2x*+ ( y*-z*), z - y ߤ ⟩            

Now  

Proof   note that (x*, y*) is a solution of (3.4.1) 

        F1(x*, z) + ⟨A1y*, z – x*⟩ + భഊ⟨z – x*, x*- y*⟩≥ 0,    ∀ z ∈ C 

        F2(y*, z) + ⟨A2x*, z – y*⟩ + భഋ⟨z – y*, y*- x*⟩≥ 0,    ∀ z ∈ C                                        

But H is a real Hilbert space 

        F1(x*, z) + భഊ⟨z – x*, x*- y*⟩+ భഊ⟨ z – x*, λ A1y*⟩ ≥ 0,    ∀ z ∈ C 

        F2(y*, z) + భഋ⟨z – y*, y*- x*⟩ + భഋ ⟨ z – y*, ߤA2x*⟩ ≥ 0,    ∀ z ∈ C                                     (3.4.8) 

 

    ⟺     F1(x*, z) + భഊ⟨z – x*, x*- (y*- λ A1y*)⟩ ≥ 0,    ∀ z ∈ C 

            F2(y*, z) + భഋ⟨z – y*, y* - (x*- ߤA2x*)⟩ ≥ 0,    ∀ z ∈ C                                               (3. 4.9) 

⟺     x*∈ T1 λ(y*- λ A1y*) ,    ∀ z ∈ C 

         y* ∈ T2ߤ(x*- ߤA2x*) ,    ∀ z ∈ C                                                                                 (3.4.10) 

But T1 λ and T2 ߤ are single-valued 

   ⟺       x*	= T1λ(y*- λ A1y*) ,    ∀ z ∈ C 
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              y* = T2ߤ(x*- ߤA2x*) ,    ∀ z ∈ C                                                                            (3.4.11) 

  x*	= T1 λ[(T2ߤ(x*- ߤA2x*)- λ A1T2ߤ(x*- ߤA2x*)]                                                              (3.4.12) 

  y* = T2ߤ[(T1λ(y*- λ A1y*)- ߤA2 T1λ(y*- λ A1y*)]                                                              (3.4.13) 

CLAIM: 

For ߤ  ,(ߙ0,2) ∋ ߣ  .and G are all nonexpansive (A2 ߤ -1)(A1 ߣ -1) :(ߚ2 ,0) ∋

now proof of the claim.  

Proof It is enough to prove that 1- ߣA1 and G are nonexpansive. Let (ߙ0,2) ∋ ߣ with 	0 < ߙ, 

since A1 is ߙ -ism, we have for x; y ∈  C. 

 y�2 (A1 ߣ -1) -  x(A1 ߣ -1)�                        

                                                            =� (x – y) -	ߣ( A1x - A1y) �2 

                                                              = � x – y �2  - 2ߣ⟨x – y, A1x- A1y ⟩ + 2ߣ � A1x - A1y �2 

                                                              ≤� x – y �2  - 2ߙߣ � A1x - A1y �2 + 2ߣ � A1x - A1y �2 

                                                              =� x – y �2  - ߣ	(ߙ2-ߣ ) � A1x - A1y �2 

                                                              ≤� x – y �2 

 are nonexpansive, then ߤand T2 ߣ	is nonexpansive and since T1 (A1 ߣ -1)⇒

�G x – Gy �  ≤ � x – y �  

                      =�{T1λ[(T2ߤ(x - ߤA2x)- λ A1T2ߤ(x- ߤA2x)] –[(T2ߤ(y- ߤA2y)- λ A1T2ߤ(y - ߤA2y)]}� 

                      =�(I - λ A) (T2ߤ(x - ߤA2x)- (I - λ A) (T2ߤ(y - ߤA2y) � 

                     ≤�(T2ߤ(x - ߤA2x)- (T2ߤ(y - ߤA2y) � 

                     	≤�(I - ߤA2)x - (I - ߤA2)y � 

                     	≤� x - y � 

that is G is nonexpansive. Remarks: If C is a closed bounded convex set of H then the solution  

of the problem (3.4.2) always exists. 
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Chapter Four 

Some Iterative Schemes Used for Finding Fixed Points of Nonlinear Operators 

4.1 Introduction 

Many iterative procedures used in fixed points of nonlinear operators and elsewhere are special 

cases of the KM iterative procedure, for particular choices of the ne operator N. 

4.2 Constrained Optimization Algorithms 

Algorithms for signal enhancement and image modification are often iterative constrained 

optimization procedures designed to minimize a convex differentiable function f over a closed 

convex set C ⊆ H. 

If the gradient operator ∇f is λ- Lipschitz continuous, that is, for each x, y ∈ H we have 

                                � ∇f (x) – ∇f(y)�  ≤ λ � x - y �                                                                 

(4.2.1) 

then the operator  ∇f  is భഊ – ism. According to Byrne and Fitzgerald (1982) If ߛ ∈ (0, మഊ ), then the 

operator G =  ߛ∇f is భమഊ – ism and the operators A = I-	ߛ∇f and PCA are av. 

To see above, i.e the operator ∇f is  భഊ – ism it is enough to show that ∇f is λ -Lipschitz 

continuous. 

Proof Let operator G be λ -Lipschitz continuous i.e 

                               � G (x) – G(y)�  ≤ λ � x - y �                                                                          

[4.2.1]                                                                                                                             

But G = I-	∇f, then we have 

                                 � G (x) – G(y)� 2  ≤ λ2� x - y �2 

� G (x) – G(y)� 2  =  �(I-	∇f) (x) – (I-	∇f) (y)� 2 

                           =  �x -		∇fx – y +	∇fy� 2 
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                           = ⟨∇fy – ∇fx + x – y, ∇fy – ∇fx + x – y ⟩  

                            ≤ �	∇fx-	∇fy� 2   + 2⟨∇fy – ∇fx, x – y ⟩+ �	x-	y� 2   

But  -�	∇fx-	∇fy�2  ≤  ⟨∇fy – ∇fx, x – y ⟩   

                            ≤ �	∇fx-∇fy�2 - 2�∇fx-∇fy�2 + �	x-	y� 2 

                            ≤�	x-	y�2 - �	∇fx-	∇fy�2 

Also                    �	∇fx-	∇fy�2  ≤ �	x-	y�2  ≤ λ2�	x-	y�2 

                            �	∇fx-	∇fy�2  ≤ λ2�	x-	y�2 

                            �	∇fx-	∇fy�2  ≤ λ2�	x-	y�2 
 

4.3 Orthogonal Projection onto Sets C and Q 

This is iterative algorithm that converges to a solution of the SFP, for any starting vector x0, 

whenever the SF P has solutions. 

 It can be seen if we let F be nonempty set and ĉ a member of F, then ĉ = PC(Sĉ) and 

� ĉ - xk+1� = �PC(Sĉ) - PC(Sxk) � ≤	�Sĉ - Sxk+1�. 

We shall show that 

�Sĉ - Sxk+1�= � ĉ - xk+1� from the definition of Sx we have 

�Sĉ - Sxk+1� =�ĉ – xk + ߛAT (PQ- I)A ĉ - ߛAT(PQ- I)Axk �2 

Expanding the terms in the right hand side we get, 

�Sĉ - Sxk+1�2 =�ĉ – xk �2 +2 ߛ⟨Aĉ – A xk, PQ Axk - PQAĉ ⟩ 

 �AT(PQ - I)Aĉ - AT(PQ- I)Axk �2 2ߛ +                     

                   ≤�ĉ – xk �2 -2 ߛ �Aĉ – Axk �2  + ⟨Aĉ – A xk, PQAĉ  - PQA xk ⟩  

 L�(PQ - I)Aĉ - (PQ- I)Axk �2 2ߛ +                   

Using 

�(PQ - I)Aĉ - (PQ- I)Axk �2 = � PQ Aĉ - PQAxk �2 - 2⟨Aĉ – Axk, PQAĉ  - PQA xk ⟩ +�Aĉ – Axk �2 
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In the line above, we find that  

 

          �Sĉ - Sxk+1�2 ≤ �ĉ – xk �2 – (22ߛ - ߛL) �Aĉ – Axk �2  

Aĉ – A xk, PQ⟩ߛL� PQAĉ - PQAxk � -2 2ߛ +                             
 - PQAxk⟩ 

Aĉ – A xk, PQ⟩(2Lߛ - ߛ2) +                             
 - PQAxk⟩ 

From inequality 

⟨PCz – PCx, z- x⟩≥ � PCz – PCx �2.                                                                                           

(4.3.1) 

And from Cauchy's inequality and the nonexpansiveness of the projection PQ, we obtain 

⟨Aĉ – A xk, PQ
 - PQAxk⟩ ≥ �Aĉ – Axk �2 

Since   (22ߛ - ߛL) ≥ 0.  It follows that 

                                  �Sĉ - Sxk �2 ≤ � ĉ - xk�2 

More precisely, we have 

 

� ĉ - xk �2 - � ĉ – xk+1�2≥ 2ߛL(⟨Aĉ – A xk, PQ Aĉ - PQAxk⟩- � PQAĉ - PQAxk �2) 

 .(Aĉ - Axk �2   - ⟨Aĉ – A xk, PQ Aĉ - PQAxk⟩ �)(2Lߛ - ߛ2) +                                   

Therefore, the sequence {� ĉ - xk �2} is decreasing (so the sequence {xk} is bounded), also 

                            {⟨Aĉ – A xk, PQ Aĉ - PQAxk⟩- � PQAĉ - PQAxk �2}	→ 0 

                                     {� Aĉ - Axk �2  - ⟨Aĉ – A xk, PQ Aĉ - PQAxk⟩} →0 

Since both sequences are non-negative. Let x* be an arbitrary cluster point of the sequence {xk} 

then, we have 

                           ⟨Aĉ – A x*, PQ Aĉ - PQA x*⟩= � PQAĉ - PQA x* �2 

And 
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                                  ⟨Aĉ – A x*, PQ Aĉ - PQA x*⟩=� Aĉ - A x* �2 

So that                     � Aĉ - A x* �2 = � PQAĉ - PQA x* �2                                                            

(4.3.2) 

then it follows from inequality ⟨c – PCx, PCx - x⟩	≥ 0                                                             (4.3.3) 

                         � PQAĉ - Aĉ �2 = � PQAx*  - A x* �2 

So that x* is in the set F, replacing the generic ĉ ∈ F with x*, we see that the sequence  

{� x* - xk�2} is decreasing; but a subsequence converges to zero, so the entire sequence 

converges to zero. 

4.4 The convex feasibility problem 

Let C1… CM be closed nonempty convex subsets of Hilbert space H. The CFP is to find a 

member of the intersection of the sects C1, C2,…, CM, if such elements exist. 

Problems in image modification are sometime stated in this way, with the elements of the Hilbert 

space H = RN corresponding to vectorized images and the convex sets representing various 

constraints to be placed on the reconstructed images. The proximity function associated with 

C1,…,CM is 

                                         f (x) = ଵ
ଶெ
∑ெ
௠ୀଵ �PCx – x �2.                                                                                 

(4.4.1) 

The gradient of  f  is  [2] 

                               ∇ f (x) = x- ଵ
ெ
∑ெ
௠ୀଵ PCx.                                                                     (4.4.2) 

 A minimizer of f is of ∇ f(x), which is a fixed point of the av operator A given by 

                                         A =  ଵ
ெ
∑ெ
௠ୀଵ PCx.               

If the intersection C of the sets C1,…, CM is nonempty, then Fix(A) = C and the orbit sequence 

{Akx} converges weakly to a member of C; if C is empty, the sequence converges weakly to a 
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minimizer of f . In the latter case the limit need not be a member of any of the Cm. If we wish to 

minimize f relative to vectors x in a closed nonempty convex set K, then we use the iterative 

scheme defined by xk+1= PK (Axk) 

The operator PKA is also av, so this sequence converges, for any starting vector x0, provided f 

has a minimum relative to K. 

4.5 The split feasibility problem 

 The split feasibility problem (SFP) is to find c ∈ C with Ac ∈ Q, if such points exist, where A is 

a real M by N matrix and C and Q are nonempty, closed convex sets in RN and RM, respectively. 

The algorithm for solving the SFP can be established by proving the following proposition. 

Proposition 4.5.1  

The vector ĉ ∈ C is a fixed point of the map T, that is Tĉ = ĉ, if and only if ĉ minimizes the 

function � PQ(AC) - (AC) �  over c ∈ C 

Proof Assume that ĉ minimizes the function � PQ(AC) - (AC) �  over c ∈ C then,  

                    � PQ(Aĉ) - (Aĉ) �  ≤ � PQ(AC) - (AC) �  ≤ � q - (AC) �           ∀   c ∈ C               

(4.5.1) 

and q∈ Q, choosing q = PQ(Aĉ). 

We find that 

           � PQ(Aĉ) - (Aĉ) �  ≤ � (AC) - PQ(AC) �   ∀   c ∈ C  , 

which tells us that 

          Aĉ  ≤  (Aĉ) - PQ(Aĉ)  

since the inequality 

         ⟨c – PCx, PCx - x⟩	≥ 0,     

then this gives us 
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      ⟨Ac – Aĉ, Aĉ - PQ(Aĉ) ⟩	≥ 0     ∀   c ∈ C, 

from 

�c - S ĉ �2 =�c – ĉ �2 +2ߛ⟨Ac – A ĉ, Aĉ - PQAĉ ⟩ + terms without c, 

it follows that ĉ minimizes the function �c - Sĉ �2 over  ∀  c ∈ C, or that ĉ = PC(Sĉ) = Tĉ. 

Now assume that 

Tĉ = ĉ then,   ĉ = PC(Sĉ), so that, by inequality ⟨c – PCx, PCx - x⟩	≥ 0we have ⟨ c – ĉ, ĉ - Sĉ ⟩	≥ 0, 

∀  c ∈ C therefore, 

                  ⟨Ac – Aĉ, Aĉ - PQ(Aĉ) ⟩	≥ 0     ∀   c ∈ C,                                                          (4.5.2) 

we also have 

          ⟨ PQ(Aĉ) – PQ(Ac), Aĉ - PQ(Aĉ) ⟩	≥ 0     ∀   c ∈ C,                                                   (4.5.3) 

Adding (4.5.2) and (4.5.3) , we obtain 

            ⟨PQ(Ac) – (Ac), PQ(Aĉ)-Aĉ)⟩≥  �PQ(Aĉ) - Aĉ�2 

Applying the Cauchy inequality, we have 

             �⟨PQ(Ac) – (Ac)�2≥  �PQ(Aĉ) - Aĉ�2                                                                        

(4.5.4) 

the inequality ⟨C  – PC x, PC x - x⟩≥  0 tells us that, for any c, x and z, we have 

     ⟨ PC z – PC x, PC x - x⟩≥  0  and  ⟨ PC z – PC x, z - PC z⟩≥  0   

Adding, we obtain       ⟨ PC z – PC x, PC x - PC z- x + z ⟩	≥  0                                              (4.5.5) 

or 

   ⟨ PC z – PC x, z - x⟩	≥	 �PCz- PC�2                                                                                      (4.5.6) 

Therefore the operator PC is firmly nonexpansive; from the Cauchy inequality we can conclude 

that 

                 �PCx- PCz�2   ≤ � x - z�2. 
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That is, the operator PC is nonexpansive. Infact, we can say somewhat more. 

Lemma 4.5.2 For any closed nonempty convex set C ∈2 RN the inequality �PCx- PCz�   ≤ � x - 

z� holds, with equality only if  

       �PCx- x�2   ≤ � PCz - z�2. 

Lemma 4.5.3   The derivative operator ∇f is λ-Lipschitz continuous for λ = ߩ(ATA), therefore it 

is v - ism for v = ଵ
ఒ
 that is    � ∇f x - ∇fy �   ≤  λ� x - y�. 

Proof Consider the estimates 

     � ∇f x- ∇fy �2 = �AT(I - PQ)Ax - AT(I - PQ)Ay �2 

                         = �AT[(I - PQ)Ax - (I - PQ)Ay] �2 

                                      ≤ �AT � x � (I - PQ)Ax - (I - PQ)Ay �2 

                                      ≤ λ � (I - PQ)Ax - (I - PQ)Ay �2            

Also 

             � (I - PQ)Ax - (I - PQ)Ay �2 

                                                    = � PQAy - PQ)Ax +Ax - Ay �2 

                                                    = ⟨ PQAy - PQ)Ax +Ax – Ay, PQAy - PQ)Ax +Ax - Ay ⟩ 

                                                                                ≤	� PQAy - PQ)Ax �2   +2⟨ PQAy - PQ)Ax +Ax – Ay⟩+� Ax - 

Ay �2 

Therefore  

� (I - PQ)Ax - (I - PQ)Ay �2 =� PQAy - PQAx �2   +2⟨ PQAy - PQAx +Ax – Ay⟩+� Ax - Ay �2. 

Since ⟨ PQAx- PQAy ,Ax – Ay⟩	≥	 � PQAx- PQAy �2        

We have  �(I - PQ)Ax - (I - PQ)Ay �2 = � Ax - Ay �2+� PQAy - PQAx �2  -2� PQAy - PQAx �2. 

                                                       = � Ax - Ay �2 -� PQAy - PQAx �2. 

Hence � ∇f x- ∇fy �2 ≤ λ� Ax - Ay �2 - λ� PQAy - PQAx �2 
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             � ∇f x- ∇fy �2 ≤ λ� Ax - Ay �2 - λ2� x - y�2 

             � ∇f x- ∇fy �2 ≤  λ2� x - y�2    

             � ∇f x- ∇fy � ≤  λ� x - y�2 

This completes the proof 

Also if λ∈ (0, మഊ
 ) then B = PC( 1- λAT(I - PQ)A) is av and, by Dolidze's Theorem 3.1.9, the orbit 

sequence {Bkx} converges weakly to a fixed point of B, whenever such points exist. 

If z is a fixed point of B, then z = PC( z - λAT(I - PQ)Az)). Therefore, for any c ∈ C we have  

                               ⟨c- z , z - (z - λAT(I - PQ)A)z⟩≥ 0 

This tells us that               ⟨c- z ,  λAT(I - PQ)A)z⟩≥ 0                                                          (4.5.3.1) 

which means, according to the characterization in the inequality ⟨C  – PC z, PCz - z⟩ ≥  0, that z 

minimizes f(x) relative to the set C. 

The CQ algorithm employs the relaxation parameter ߛ in the interval (0, మഊ
 ), where L is the 

largest eigenvalue of the matrix ATA. Choosing the best relaxation parameter in any algorithm is 

a nontrivial procedure. 
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Chapter Five 

The Main Result 

5.1 Introduction 

From the various discussions in the previous chapters we can consider   xk+1 = (1-	ߙ)xk+ ߙNxk as 

a common iterative scheme for fixed points of some linear operators, the result in this thesis is 

hereby presented as theorem as follows. 

5.2 Main Result 

Theorem 5.2.1 

 Let T be an average operator on H and fixed point of T  is nonempty, the Picard's scheme {Tkx} 

converges weakly to a member of Fixed point of T , for any  starting  point x ∈ H. 

Proof 

Let z be a fixed point of ne operator N and let T = (1-	ߙ)I + ߙN, so the iterative step become 

xk+1=Txk = (1-	ߙ)xk+ ߙNxk  (5.1.1) 

The identity in equation (3.1.3) is the key to proving this Theorem 

Using Tz = z and (I - T)z = 0  and setting G = I – T we have 

              � z -  xk�2 - �Tz - xk+1�2 = 2⟨Gz -  G xk, z - xk ⟩ - �Gz  - G xk �2           [3.1.3] 

Setting Txk = xk+1,  G = I - T then 

             2⟨Gz - G xk, z - xk ⟩ - �Gz  - G xk �2k 

                                                = 2⟨(I - T )z - (I - T)xk, z - xk ⟩ - �(I - T)z  - (I - T ) xk �2 

                                                = 2⟨z - Tz - xk + Txk, z - xk ⟩ - � z - Tz - xk + Txk �2 

                                                = 2⟨ Txk – Tz + z - xk, z - xk ⟩ - ⟨Txk – Tz + z - xk, Txk – Tz + z - xk ⟩ 

                                                = 2(⟨ Txk – Tz, z - xk ⟩ + ⟨ z - xk, z - xk ⟩) - (⟨Txk – Tz, Txk – Tz ⟩ 

                                                 +⟨Txk – Tz, z - xk ⟩ +⟨Txk – Tz + z - xk ⟩+  ⟨ z - xk, z - xk ⟩ 
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                                = 2 ⟨Txk – Tz, z - xk ⟩ + 2� z - xk �2 - � xk – Tz�2 +2⟨Txk – Tz, z - xk ⟩ - � z 

- xk�2 

                                                 = � z - xk �2 - � xk – Tz�2  

                                                 = � z - xk �2 - � Tz - xk+1�2. 

 Since, by Lemma 3.1.3, G is ଵ
ଶఈ

 - ism, we have  

                         � z - xk �2 - � z - xk+1�2 ≥  (భഀ	-1) � xk - xk+1�2                                                                       

(5.1.2) 

to see this: since G is ଵ
ଶఈ

 - ism, then 

                   ⟨Gz -  G xk, z - xk ⟩ ≥ ଵ
ଶఈ

 �Gz  - G xk �2  

so that 

                     � z - xk �2 - �Tz - xk+1�2 = 2⟨Gz - G xk, z - xk ⟩ - �Gz - G xk �2  

                                                                                       ≥2x ଵ
ଶఈ

 ‖Gz - G xk � - �Gz - G xk �2 

                                                           = (భഀ	-1) �(I –T)xk�2 

                                                           = (భഀ	-1) � xk - xk+1�2 

Consequently, the sequence {xk} is bounded, the sequence {� z - xk �2} is decreasing and the 

sequence {� xk - xk+1�2} converges to zero. Let x* be a cluster point of {xk}. Then we have  

Tx* = x*, so we may use x* in place of the arbitrary fixed point z. It follows then that the 

sequence {� x* - xk �2} is decreasing; since a subsequence converges to zero, the entire 

sequence converges to zero. 

Note that (i) The sequence {x*} is bounded if ∃ M ≥ 0 � xk� ≤ M       ∀ k ∈ ℕ 

To see (i) above, that is boundedness of the sequence {x*} 

(భഀ	-1) � xk - xk+1�2  ≤ � z - xk �2   +� z - xk+1 �2 
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summing this from k=1 to m for some m ∈ ℕ we get  

  (భഀ	-1)∑ெ
௞ୀଵ  � xk - xk+1�2    ≤ � z – x1 �2  - � z – x2 �2+ � z – x3 �2  +…� z – xM �2 - � z – 

xM+1 �2. 

                                                                     ≤ � z – x1 �2    ≤ ∞  

Thus 

                                             ( భഀ	-1)∑ெ
௞ୀଵ  � xk - xk+1�2 < ∞ 

since this is true for all m ∈ N, we obtain 

                                            ( భഀ	-1)∑ஶ
௞ୀଵ  � xk - xk+1�2 < ∞ 

which implies    lim௞→ஶ � xk - xk+1�2 < ∞ 

and so {xk} is bounded, necessary condition. 

To see cluster point, by Bolzano Weierstrass Theorem, {� xk - xk+1�2} has a convergent 

subsequence therefore {�z - xk�2} is a bounded sequence in R.  

Then,  ∃ {� x - xk�2} ∞
݇ = 1⊆  {� xk - xk+1�2} ∞

݇ = 1 which converges. 

 Let � z – x*�2  be a limit such that 

                                                                                lim௞→ஶ � z - xk
n�2 = � z – x*�2 

                                                                                then x* is a cluster point of  { xk} ∞
݇ = 1 

                                                                             now T x* = x*   

                                                                             this is true for 

                                                                                 lim௞→ஶ � xk
n - xk

n+1�2 = 0 

                                                                                 lim௞→ஶ � xk
n –Txk

n�2 = 0 

                                                                                                   � x* - Tx*�2 = 0 

                                                                                                              Tx*= x*   
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Chapter Six 

Summary, Conclusion and Recommendations 

6.1 Summary 

This work critically looked at a general iterative scheme for fixed points of nonlinear operators, 

after proving some theorems, propositions and lemmas that are relevant to the thesis. We have 

shown that the average operator T with iterative step xk+1 = T xk = (1-	ߙ)xk + ߙNxk is a common 

scheme that can represent some of the iterative algorithms being used for finding fixed points of 

nonlinear operators. This iterative algorithm which is a particular case of the KM approach for 

finding fixed points of ne operators on Hilbert space is extensively used in signal enhancement 

and image modification. These operators on Hilbert space include GP bandlimited extrapolation, 

the Landweber methods for finding constrained solutions of linear systems of equations, 

simultaneous and sequential methods for solving the convex feasibility problems. 

The algorithm has broad applicability in many areas of mathematics and physical and 

engineering sciences. It is also useful in medical imaging which include image reconstruction in 

conjunction with ray tracing for ultrasound and microwave tomography. 
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6.2 Conclusion 

 i. Based on the discussions under existing, current and main result, we conclude that the iterative   

procedure defined by xk+1 = T xk = (1-	ߙ)xk + ߙNxk, is a general iterative scheme for fixed point 

of nonlinear operators.  

ii The iterative schemes of the complements of nonexpansive ne, firmly nonexpansive fne and 

average operator av T converge to fixed points of T as the main operators v. 

iii. The strict contraction (sc) operator S defined by iterative step  

x0 ∈ K; xk+1 = (1-λn)xn + λnTxn;  n ≥ 0 where  λn ∈(0; 1) called  Mann  iterative, is the property of 

av operator T that is sufficient to guarantee convergence of the sequence {Tkx} to a fixed point  

of T,  whenever such fixed point exists. 

iv. There are a lot of significant relationships between nonexpansive ne operator N, firmly 

nonexpansive fne operator F and average av operator T, because each of the operators can 

perform the functions of another if the necessary conditions are attached to them. 

6.3       Recommendations 

This thesis discussed a general iterative scheme for fixed points of some nonlinear operators 

extensively and not the applications. We therefore recommend that a new work be carried out by 

looking at the application of this general scheme. 

The iterative scheme is very useful in the area of Mathematics and other related fields.  The use 

of this scheme can be extended to the area of communication and other disciplines in order to 

popularize the importance of this algorithm both locally and internationally.  
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