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ABSTRACT

This work presents a procedure for determining
the most probable maximum floods from flood data which
were used in determining the peak design floods and
in estimation of the risk of failure of hydraulic
structures with certain return periods and expected
project life by numerical analysis. Flood data for
river Benue at Numan for the periods (1955-1980) and
(1982-1987) were fitted to the "Two parameter
lognormal distribution”, the "Gumbel extreme value
distribution” and tested. The break in periods was due
to the construction of a dam at Lagdo (Cameroun) in

1982.

The prior probabilities for the period (1955-1980)
were estimated and then used as a weighted combination
to update the first set of data using Bayes' theorem.

A second approach by weighted combination of individual
two-parameter distributions using the same Bayes' theorem
enabled a selection of the best among the two-parameter
distributions. The peak design floods for the period
(1982-1987) were determined given the return periods
for each distribution while the risk of failure of
hydraulic structures was estimated as a function of

return periods and expected project life.

(iv)



ACKNOWLEDGEMENT

The author herein expresses his indebted
heartfelt gratitude to his Supervisor Dr. M. Sowinski
for his thorough guidance, Dr, S. Mustafa for his useful
guidance and the following other important people for
their respective contributiors towards the completion

of this work. They are:

‘Dr. C. A. Okuofu the Postgraduate Co-Ordinator in
the Department, Dr. 0.J. Mudiare of Agricultural
Engineering Department, Dr. D.W. Ebong of Mathematics
Department, Prof. J. A. Ogunrombi and the Head of
Department Dr, L.I., Odigie for his elderly concern and

assistance.

Engr. and Mrs E.C.N. Okafor, Dr. and Mrs T.C. Onuchuku,

and Ogbuoji, Paul Chukwuka for their moral support,

Messrs Yinuna Yussuf, Asindi Iloba Chris, and

Mbah Valentine Chude for their encouragement.

My mother, Mrs R.N. Ngene (Nne-Ezekwe) and also
Stella Mma Obuekwe for enduring the long period of my

absence.

(v)



CERTIFICATION

This Thesis titled "Estimation of Maximum Floods

for river Benue at Numan based on Bayes' Theorem"

by NGENE, Charles lkechukwu meets the regulations

governing the award of the degree of Master of Science

(Water Resources & Environmental Engineering) of

Ahmadu Bello University, and it is approved for its

contribution to knowledge and literary presentation.

.....lézwﬁég;zﬁ? Eovis 3 Reaees

Dr. M. Sowinski
Chairman, Superyvisory Committee

AMX/L{?A;
_/"'.! . L

Dr. S. Mustafa
Member, Supervisory Committee

Pr. L. T, {f)digie:\’“‘—'Eg

Head of Department

LR - 8 e

Prof. D. I. Saro:ﬂ’,/f”,’*ﬂ-
Ag. Dean, Postgraduate Schocl

(vi)

vate 5/ /55

267 | p2

Date:......-....-

Date: ./8:_. (—gﬂ.



Chapter

2.4

2.2
G 24201
24242
C2.2.3
2.2.4

" 2.2.5
. 2.2.6

2.2.7
2.3
2.4

2.4.1

U 2.4.1.1

2.4.4.2

2.4.2

. Acknowledgement

'1%5331Table of Contents

Literature Review

{Posterior probability

TABLE OF CONTENTS

Title page
Declaration~
Dedication

_ Abstract
" Certification

" lList of Tables

0 List of Appendixes - e

. List of Figures

Notation

" INTRODUCTION

Flood probability estimation

FPormulation of reszarch problems

' DEFINITIONS, THEORY AND LITERATURE_ R

REVIEW

Intraoduction

Lo

Definitions ' ™
Peak design flood ;;a¢ﬁga'f;¥;':
Maximum probable floeod _
Initial prior prcobability
Posterior probability = "
Likelihoods B

Combined probability

Simple risk of failure

Bayes' theorem

Posterior probabilities for two
distributions

Postericr probabilities for one
distribution '

Prior probability

S (vii)

P N T R T T T S S S SO N

ii
iii

iv

10
11



Chapter
2.4.37
2+4:3:1

2.4.3,2

2.4.3.3
2.4.4
2.4.5
2.4.6
2.4.7

3.1
3.2
3.2.%
30242

3.2.3
3.3

3.3.1
3e3az

3.3.:-1
3.3.2.2

3030563

3.3,.3

3.3.3.1
3:3:3e2

Likelihoods

Likelihood for single recorded
peak flood

Likelihood for several recorded
peak flows

Likelihood f of exceedence
Combined probabilities
Peak design floods

Simple risk of failure

Previous findings on Flocd
probability estimation

VERIFICATION OF HYDROLOGICAL DATA
AND SELECTION OF TYPES OF DISTRUCTION

Introduction

Verification of hydrological data
Introduction

Collection, analysis and adoption
of data »

Conclusion

Selection of types of distribution
Introduction

Analysis of data for the period
(1955 - 1980)

Introduction

Probability plotting for Gumbel

extreme value distribution and
Two-parameter lognormral distribution

for the period (1955-1980)

Summary

Analysis of data for the period
(1982-1987)

Introduction

Probability plotting for Gumbel
extreme value distribution and Two

parameter lognormal distribution for
the period (1982-1987)

& - & & %

13

i3

15

16
&)
19

21

23

25

25
25
25

27

32
42
4z

43
43

43
47

48
48

48



Chapter
3. 3.3.3

3.3.3.4
3.3.3.4.1

3.3.3.4.2

3.3.3.4.3

3.3.3.5
343.3.5.1

3:3.3.5.2

3. 3. 3.5.3

4.3.2
4.4
4.4.1

4.4.1.1

4.,4,1.2

Mean and Standard deviation values
for the variable, Q, for the period
(1982-1987)

Gumbel extfeme value distribution
Introduction

Chi-squared goodness-6f-fit test
statistics for Gumebel extreme
value distribution for the period

(1982-1987)

K-S goodness-of-fit test statistics
for Gumbel extreme value distribution
for the period (1982-1987)

Twc parameter lognormal distribution
Introduction

Chi-squared goodness-cf-fit test
statistics for Two parameter
lognormal distribution for the
period (1982-1987)

K-S goodness-of-fit test statistics

for Two parameter lognormal
distribution for the period(1982-1987)

Conclusions

COMPOUND LOGNORMAL DISTRIBUTION
Introduction

Assigning prior probabilities to each
of the component distributions

Deriving the low, probable and high
values of mean and standard deviation

Initial probability matrix

Updating the data of the distribution
Lognormal distribution

Likelihoods for single recorded
peak flood

Posterior probabilities for singular
recorded peak flood

Discussion of results
(ix)

52

55
- 13

56

61
64
64

65

68
70

i |
71

T3

75
78

80
81

81

82
83



Chagter
4,4.1.4

4.4.1-5

4.4.1.6

4.4.1.7
4.5

5.1
5.2
5.3
5.3.1.1

5.3.2.3

5.3.2.4

Deded
5.4

5.4.1.1

Singular likelihoods for several

recorded peak flows for the period
(1982-1987)

Combining singular likelihoods for
several recorded peak flows for the

Period (1982-1987)

Posterior probabilities for several
recorded peak flows for the period

(1982-1987)

Discussion of results

General conclusion

COMBINING LOGNORMAL AND GUMBEL
DISTRIBUTIONS

Introduction
Assumption of prior weights
Updating the combined distributions

Likelihoods for singular recorded peak
flood

Posterior weights for singular
recorded peak flood for the period
(1982-1987)

Discussion of results

Singular likelihoods for several recorded

peak flows for the period (1982-1987)

Combining singular likelihoods for

several recorded peak flows for the
period (1982-1987)

Posterior weights for several recorded
peak flows for the period (1982-1987)

Discussion of results

Summary

Combining probabilities using Lognormal
and Gumbel distributions

Combined probabilities for flood
discharges for the period (1955-1980)

(x)

Page

84

86

86

89
89

90

90
91
93

94

95
98

99

101

103
109

109

110

111



Chapter

5.4.1.2
5.4.2.1

5.4.2.2

6

6.1
6.2
6.2.1

6.2.2
6.3

6.3.1
6.3.2
6.4

Discussion of results

Combined probabilities for flood

discharges for the period (1982-1987)

Discussion of results

DETERMINATION OF PEAK DESIGN FLOODS

Introduction

Lognermal distributicn

Determining peak design return floods

for given return periods

Discussion of results

Gumbel distribution

Determining the peak design return
floods for given return periods

Discussion of results

Summary

ESTIMATION OF RISK OF FAILURE
Introduction

Lognormal distribution

Estimating simple risk of failure
Discussion ¢f results

Gumbel distribution

Estimating simple risk of failure
Discussion of results

Summary

CONCLUSIONS AND RECOMMENDATIONS
Conclusions

Recommendations

REFERENCES

APPENDIXES

(xi)

page

116

117

121

2123
123
124

124
126
127

139
139
141
142
144



Table

LIST QF TABLES

Flood discharge on river Benue at

Numan from data obtained from Upper

Benue River Basin and Rural

Development Authority, Yola.

Flood discharges on river Benue at

Numan from data obtained from
Federal Department of Water
Resources, Mando Road, Kaduna for

the period (1955-1980).

Stage-discharge for rating curve
number 1 from Inlard Waterways
Division, Lokeja branch, for the
period (1955-1972) for river

Benue at Nuwman.

Stage~discharge for rating curve
number 11 from Inland Waterways
Division, Lokoja branch for the
period (1973-1980), for river

Benue at Numan.

Stage-discharge for river Benue at

Numan divided into sections from

Inland Waterways Division, Lokoja

branch, for the period (1955-1987).

(xii)

Page

34

38

40



Table

3.9 .

3.11

3,12

Probability test for flood discharges

for the period (1955-1980).

Probability test for flood discharges
for the period (1982-1987).

Mean and Standard deviation values

for the period (1982-1987).

Histogram intervals for flood discharges
for Gumbel extreme value distribution

for the period (1982-1987).

K-S test statistics for GCumbel
extreme value distribution for flood

discharges for the period (1982-1987).

Histogram intervals for Two parameter
lognormal distribution for flood

discharges for the period (1982-1987).

K-S test statistics for Twec parameter
lognormal distributicn for flood

discharges for the period (1982-1987).

Prior probability for the period

(1955-1980).

The low, probable and high values of
mean and standard deviation for the

variable, Q.
(xiii)

44

49

55

59

63

66

69

79

78



Table page

4.3 Initial probability matrix 79
4,4 Singular likelihoods and posterior
probabilities for 1981 only 83
4.5 Singular likelihoods for six year
peak flows for the period (1982-1987) 85
4.6 Combined likelihoods and posterior

probabilities for several recorded

peak flows, 88
5.3 Assumed prior weights for the period

(1982-1987). 92
5.2 Singular likelihoods and posterior

weights for 1981 only. 96
B Singular likelihoods and posterior

weights for 1981 only . 98
5.4 Singular likelihoods for six year

peak flows for the period

(1982-1987). 100

5.5 Combined likelihoods and posterior

weights for several recorded peak

flows. 106
5.6 Combined 1ikelihoods and posterior

weights for several recorded peak flows. 108
5.7 Combined probabilities for flood

discharges for the period (1955-1980). 113

(xiv)



Table Page

5.8 Combined probabilities for flood

discharges for the period

(1982-1987). 2
6.1 Peak design return floods for given

return periods obtained using

Lognormal distribution 127

6.2 Peak design return floods for

given return periods obtained

using Gumbel distribution 128
7.} Risks of failure given the

expected project life. 134
7.2 Risks of failure given the

expected project life. 137

(xv)



APPENDIX

II

I11

1v

LIST OF APPENDIX

Construction of the dam at Lagdo

in the Cameroons.

Cumulative Normal Distribution
?
Percentile Values (X~ ) for the
a,v
Chi-square Distribution with v degrees

of freedom (shaded area = qa)

Critical values for the K-S test

statistic

Valves of the standardized Type 1

extreme-value distribution

Ordinates Y of the standard Normal

Density.

(xvi)

PAGE

144

145

14¢

149



LIST OF FIGURES

Figure Page

P Partition of § and Q into mutually

exclusive events

22 Compound distribution 19

| Location of study area 26

3.2 Stage~-discharge rating curve for river
Benue at Numan for the period (1955-1980)

from Federal Department of Water Resources,

dando Road, Kaduna. 29
3.3 Stage-discharge rating curve for river

Benue at Numan for the periods (1955-1972)

and (1973-1987) ftﬁm Inland Waterways

Division, Lokoja branch, for numbers 1 and

30

IT respectively.

3.8 Cumbel extreme distribution probability
for river Benue at Numan for the period

(1955-1980) 45

35 Lognormal probability for river Benue

at Numan for the period (1955-1980) 46

3.6 Cumbel extreme distribution probability

for river Benue at Numan for the

period (1982-1987). 50

X.7 Lognormal probability for river Benue

at Numan for the period (1982-1987). 51

(xvii)



Page
PDF for river EBenue at Numan for the
114
period (1955-198Q)
PD¥ for river Benue at Numan for
the period (1982-1987). 120

(xviii)



LIST OF NOTATIONS

a = fungtion of n

A = actual data for the periocd (1982-1987)

hn = function of n

B = basic data for the period (1955-1980)

B, = additional data to B

C = combined

D, = ec¢ritical valoe of the chi-squared goodness-of-

fit test statistic
D = observed yvalue of the K-S test statistic
2(max)

Dn o™ ecritical value of the K-S test statistics
»

Ej = normal expected number of observations

f(QIMY'UYzl = likelihood of mean M_, and standard

Y

deviation 0., Biven the.variable, Q.

&’

fu(u) = PDF for the standardized variable, u.

fw(w) = PDF for the reduced variate, w.
F(Qi) = CDF for the variable, Qi'

F*( Q(l)) = observed cumulative histogram

Fu(u) = CDF for the standardized variable, u
Fw(w) = (CDF for the reduced variate, w

H = High

Hei = elements in a set or set of eyents

i = order of samples

i] = index value of mean

i = index of standard deviation value

(xix)



k = number of categories

kD = number of years

1(Q|0) = likelihood of joint occurrence of independent

events Q given O

L = Low

Lij = likelihood of combinatioen i, ]

LJz = likelihood that Q2 wonld oceur if distribution
]l is correct

'L22 = likelihood that Q2 would occur if distribution
2 is correct

L€

6(Q) = combined likelinoocd for GCumbel distribution
LG(Qk) = gingular likelihood for Gumbel distribution

L combined likelihood for Lognormal distribution

LLN(Qk) = singular likelihood for Lognormal distribution

HQ = mean value for the variable Q

HY = natural logarithms of the mean value

n = size of data

np = expected project life

N = total number of samples ofthe distribution
Nf = normalization factor

Ney = normalization factor for first approach
Nfz = normalization factor for second approach
0j = number of observed values

P = probable

Pr = probability

P]l = probability that Ql will be exceeded using

distribution 1

(xx)



912 = probability that QJ will be exceeded msing

distribontion 2

P. . = posterior probability
1,1]

P, . = prior probhahility
1,1]

p) B)
1 &

= posterior probability (weight) of combination, i,j,
for section B]

P(HeiJ = prior probabilities of the events Hei

P(HeiIQ) = posterior probabilities of the events Hei

P(QlHei) = likelihood function

P(Q)LN = density function fer lognormal distribution

PG(Q) = PDF for Gumbel distribution

PLN(Q) = PDF for lognormal distribution

PC(Q>Qi) = probability of a flood of magnitude Q exceeding

Qs

i

PL = likelihood of flow Q not being exceeded by another

flow of magnitude Qi in np~ years
Pn(Q) = functional equation
Q = variable
Ql = design magnitude
QT = peak design return floods for given return periods,
r = no. of parameters estimated from the data
RYn = gimple risk of failure involved in hydrologic

design for given expected project life, np

(xxii)



sample space

snmmation
return period
standardized variable

parameter for the rednced variate

coefficient of variation for the variable Q
redvced variate

probability that distribution ] is correct
probhability that distribution 2 is correct
assigned prior weight to Gumbel distribution
posterior probabilicty (weight) that distribution

1l is correct (given that Q2 has occurred)
posterior probabiliry (weight) that distribution

2 is correct (given that Q2 has occurred)

posterior weight for Section A due to Gumbel

distribution for first approach,

posterior weight for section B, due to Gumbel
distribution for second approach.

assigned weight to lognormal distribution

posterior weight to section A due to lognormal

distribution for first appraoch

posterior weight for section Bl due to lognormal
distribution for second approach

natural logarithm of Q

standard deviation for the variable Q

natural logarithm of the standard deviation value

(xxiii)



a = significance level

scale parameter

@, = parameter for the reduced variate

~
B = location parameter

T = product
I = summation
X = observed value of chi-squared goodness-of-fit

test statistic

2 . 5 o ; :
Xa,v = critical yalpe of the chi-squared goodness-of-fit
test statistice

v = degrees of freedom

(xxiv)



CHAPTER

INTRODUCTION
L B FLOOD PROBABILITY ESTIMATION

The estimation of maximum floods is very important
because it is the basis from which most hydraulic/
hydrological designs are made. A poor knowledge of this
will give room to poor designs leading to immediate or
eventual failure of such projects, There are
procedures for estimatring these maximum floods and the

methods are as follows:

(i) Traditional approach using frequency analysis;

(ii) Approach based on probability distribution.

In customary approach a frequency ﬁualysis is
applied to the available data and floods with certain
specified average return periods, T-years (like say
1.5, 6, 12 ~yrs) are derived. This is applied in

situations where adequate data are available.

In some pituations where the consequences of failure
are very high, the maximum probable flood is used for
design. This maximum probable flood 1is obtained using
the second approach. In tnhis approach a probability
distribution is plotted. It is a graph of probability
against maximum discharges. The peak flood at the highest
point of the probability distribution is the maximum

N~ |
e o O O T



(a) derivation of parameters for component

distributions anc assumption of prior

probabilities;

(b) updating the pricr probabilities using Bayes'

theorem;

(iv) Combining Lognormal and Gumbel distributions

by:
(a)

(b)

(c)

assuming subjective weights for distributions

obtained for the period (1982-1987)

updating the weights assigned to

distributions computed for the period

(1955-1580) by consideration of

one year record (1981 only) and

several year record (1982-1987),

using Bayes' theorem;

estimation of the influence of both approaches

on the PDF.

(v) determination of peak design floods for given

return periods;

(vi) estimstion of simple risk of failure for different

expected project life and given return periods;

(vii) drawina conclusions and recommending solutions.
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by taking percentage points of areas under the normal

curvee.

2.2.4 POSTERIOR PROBABILITY:

Posterior probability is a weighted combination of
a prior preobability and a likelihood function which are

normalize to make the sum of the posterior probabilities

add up to 1.0.

2.2.5 LIKELIHOODS:

Likelihoods area density functions obtained by

combination of mean and standard deviation i.e. each is
being specified by a mean and standard deviation and when

duely followecd the distribution is said to be accepted.

In order words, they are in form of models.

2.,2.6 COMBINED PROBABILITY:
Combined probability is a weichted combination of two
probabilities using two different distributions of the
same distribution or different distributions. This could
be the prior weight or posterior weight being combined by
the probability distributiorn function of the same distribution

distributions.

2.2.7 SIMPLE RISK OF FAILURE:

The simple risk of failure is the probability of
occurrence of the variable, Q, greater than the design
magni tude, Qi’ which is also equal tc the chance of

nonoccurrence of Q< Q, (Yen (1970)).




2.3 BAYES' THEOREM

-

Aécoédinu to Kalbfleisch (19792(a)) Bayes' theorem

is explained using Fig. 2.1 of the set theory and the

eiplanation'is as follows:

FI1G.

e e i o—

2.1

Assume H
e

Q = QHej U Qﬂez v QHe

Partition of § and Q into mutually exclusive

cvents

»

]

H
e

2

H

€

k

3

U ... UQH_

k

to be a set of equal

partition in the sample space and let Qbe any other event
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as shown in Fig. 2.1, Suppose that the probabilities

P(H, ) and the Conditional probability P(Q‘“Ei) of event

-

Q within each of the sets He of the partition are
known. The problem becomes to determine the conditional

probability P(He |Q) of the events He when Q is known
i i

to have occurred, If

P (Q) >0 o i (2.1)

By definition of eqn (2.1), let He and Q be two events
i
defined on the sawme sample space, with P(!-lE y > 0.
i
The conditional probability of H, given the observed

i
data, Q is defined by

P, o) = F(Q:Hei)
i P(Q)

The numerator in eqn (2.2) using eqn (1.2.1) in Box

and Tiao (1973) may be expressed as:

P(Q’Hei) = P(anei) P(H_ ) A S (2.3)
1

and substituting eqn (2.3) into eqn (2.2), we get

P(QIHe;) P(Be;) ‘e “eo (2.4)
P(Q)

P(H_|Q) =
“i
According to Kalbfleisch this rule was first given in

a paper by the Reverend Thomas Bayes in 1763 and is

called Bayes's theorem, He further explained that the
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probability P(Q) can be obtained as

2(Q) =

D0

P oy 2.5
. (Qfn,.) P(H,.) (2.5)

He said that the probabilities P(Hei) are called the

a priori probabilities or prior probabilities of the
events Hei. and that the conditional probabilities
P(Heilq) are called the a2 posterior probabilities or
posterior probabilities of the events Hei. So the
conditional probabilities P(HeiIQ) called posterior
probabilities depends on the other conditional probability
P(Q]He_) called the likelihood functions. As such

i

cbtaining the posterior probabilities depends or is

conditioned on obtaining the likelihood functions.

Bayes's theorem modifies the prior probabilities
to incorporate information provides by the occurrence
of event Q. From the aforementioned explanations the
Bayes's theorem is said to be a direct consequence of
the definition of conditional probability. However,
use of the Bayes's theorem is sometimes advocated in

situations where the prior probabilities P(He ) cannot
i

be verified empirically.

2.4 LITERATURE REVIEW

2.4.1 POSTERIOR PROBABILITY

The work in posterior probabilities are reviewed

in the following two orders:
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(i) Posterior probabilities using compound
distributions as a weighted combination of

individual two-parameter distributions;

(ii) Posterior probabilities using compound
distributions as a weighted combination of

different parameter of the same distribution.

So the first thing to do is to review works done in (i).

2.4.1.] POSTERIOR PROBABILITIES FOR TWO DISTRIBUTIONS

According to Russell (1982), if the peak flow in
one year is known to be QZ’ then the weights can be
updated, from Bayes' theorem which states that:

Prior probability x Likelihood

Posterior’ probability = Normalization factor

5 5 T T (2.6(a))

or
W = T 1 caa T280))

in which HJZ = posterior probability (weight) that
distribution 1 is correct (given that Q2

has occured),

]
“12 ) “LN i. e posterior probability for

Lognormal distribution,

L = Likelihood that Q2 would occurs if

k2

distribution 1 is correct (it is given by

the height ofthe probability density curve)
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le = LLN(QZ) i.e. Likelihood for Lognormal

distribution,

and W.. = "ako2 (2.6(c))

in which sz = posterior probability (weight) that
distribution 2 1is correct (given that 02

has occurred),

\J

H22 = WG i.e. posterior probability for Gumbel

distributiong

L22 = Likelihood that Q2 would occur if distribution
2 is correct ( it is given by the height

of the probability curve),

L = LG(QZ) i.e, Likelihood for Gumbel

22

distribution;

- W LLN [Qz) . “'c LG (Qz) 2 K2.7)
and is simply a normalization factor to make the sume of

the posterior probabilities add up to 1.0.

2.4.1.2 POSTERIOR PROBABILITIES FOR ONE DISTRIBUTION

According to Russell (J982), this is compound
distribution that uses each likelihood to update a prior
prcbability and renormalizing to make the new (posterior)

probabilities add up to 1.0, i.e.
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P = P
1].] 11-.1 Li]sJ
N e - .. (2.8)
F
- - ‘
in which Pi = posterior probability (weight)
]'
assigned to combination il' 33
i] = index value of mean (1-n);
] = index of standard deviation value (l-n);
n = size of sample
Pisj = Prior probability of combination i,.];
]
L. . P &1 F " " i
i,3 = likeliliood of combination of s 3
given the data Q,
= L. . ; . 2
i,,1] (Q]) i.e. likelihood of the
variable Q, given the design magnitude,
Ql' and
) Y. 2 -
Nf = normalization factor = I i 1?
i,=]
1
L
11’.]
... "o (209)

2:5%:.2 PRIOR PROBABILITY

Several authors contributed on what prior
probability could be and some of their contributions

are as follows:

According to Box and Tiao (1973) "a priori

distribution is supposed to represent knowledge about

¥ ' AT Sy

A= % -t ' . "l s
Y il \ ! aot LS {eut il Y
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parameters before the outcome of a projected experiment
is known". On the other hand, Macdonald (1966) has

it that the prior probability could be as:

P(u, ) = i (2.10)
i IH, .

where Hei are indepémndent events in a container and this
events could be drawn randomly without any replacement.
According to Arnold (1971), there are situations in
which investigators know little or intend to continue
as if they knew little, abont parameters of a model.
Hence, there is need for clear—-cuot or definite rules for
selecting a priori distribution that would look like
knowing little, However, filling this need has been a
problematic aspect of the Bayesian approach zo inference
used by Bodo and Unny (1976). This led Jeffrey to

suggest some rules.

Jeffreys in Arnold (1971) suggested two ~ules for
selecting a priori distribution, which, according to
him "... cover the commonest cases". He staced the

rules as follows:

(i) "If the parameter may have any value in a

finite range, or  from - ® to 4= jts

prior probability should be taken as uniformly

distributed.



13

(ii) If it rises in such a way that it may conceivably
have any value from 0 to =, the prior
probability of its logarithm should be taken as

uniformly distributed”™.

This will indeed act as a guide in selecting types of
model. It actually applied to the two-parameter models of
Lognormal and Gumbel distributions shown in Bodo and
Unny (1976). The next thing to do is review works done in

area of likelihoods.

2.4.3 LIKELIHOODS

The previous works done in area of likelihoods were
carried out in three main ways. The ways are:
(i) Likelihood for single recorded peak flood;

(i} Likelihood for several recorded peak flows

(combining Likelihoods);

(iii) Likelihood of exceedence

The order in which these works were done starting with (i)

are as follows:

2.4.3.1 LIKELIHOOD FOR SINGLE RECORDED PEAK FLOOD

According to Bodo and Unny (1976) in their example
of "prior distribution' in which they used two-parameter
model forms to represent order of alternmatives typically

entertained as potential flood models. They are given
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by the height oftheprobability density functions as:

For Lognormal model:

i 2
f(QIMY’CYz) - 3 exp | -} (an “My) i ws £ 3E)
QUY(Zr)s %
0 < Q <« = — <HY<m 0<c§ < @
5 : 2
in which f(Q[HY, oy ) =L

iy,1 (Q) = 1likelihood of mean HY'

and standard deviation O given the variable

Y’
Q = L,v(Q);
) = index of mean value (from ]-n)

j = index of value of standard deviation

(from 1-n);

i For Gumbel model:

I(QIGQX' B) - i exp£ - (Q-B) - exp [_ (Q_&:__B) ..(2‘12)

ex

-w(ng U< < - w<fB <

In which £(Qla__,B8) = L(Q) i.e. likelihood = L.(Q).
B

They did nmet explain what the parameters &ex and

really meant. Another researcher Haan (1982), explained
that the parameters aex and E are scale and location
parameters with ﬁ being the mode of the distribution.
Some other researchers in their own work explained how

these parameters of the type 1 extreme value

distribution called the Gumbel distribution could be
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estimated. They are Lowery and Nash (1970) in
Haan (1982) using method of moments, after trying several

other methods, gave the estimators to be:

~
-

o
a _Q_ (2.13
=5 3283 )

and

B = HQ - 0.45 aQ (max imum)

= “Q + 0,45 OQ (minimum) - .. (2.14)
Bodo and Unny (1976) did tests on the rwo-parameters
models to proyide basis for their use in Bayesian
probabilities andto become more familiar with the data

in use. The tests were ran using Kolmogorov-Smirnov

(K-S) test statistics for 46 events because it is a
relatively weak test, it was conducted at 907 confidence
level, and it accepted all the models. A second test
using Chi-squared test, a less generous test was conducted
at 99Z confidence level unsing the same 46 events and it

as well accepted the two distributions. This is why the
two distributions are considered in the sample data

obtained for this study.

2.4.3.2 LIKELIHOOD FOR SEVERAL RECORDED PEAK FLOWS

Bodo and Unny (1976) as a method of combining
likelihoods from several year records explained that the
likelihood function L(Q[G) was derived as the probability

of the joint occurrence of independent events Q given



16

f£(qfe) 7 Y (2.15)
=]

L (Qf0) =

Ll — B - |

According to Russell (1982), "when there are several
recorded peak flows, the likelihood of each combination
is the product of the likelihoods computed from the

individual pieces of data", i.e.

[
L. .
i,,] (@ = ol SR L ce. (2.16)
D
In which K_ = 1, 2, .., B

D

¢ means combined.

What he showed was that for likelihoods for say three

years, their combined likelihoods using egqgn (2.16) will be:

Ly (@ = L,,€Q)) = Ly;(Q,) x L,,(Qy) ... (2.16(a))

ng Q) = 1,, xL,, (Q,) x L,, (Q,) vie  C8EH))

L3 (@) = Lyy () = L4,(Q,) % L,,(Q,) +o. (2.16(e))

2.4.3.3 LIKELIHOOD OF EXCEEDENCE

According to Russell (1982) "for information on

flecods exceeded or not exceeded a given number of times
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the likelihood are based on the probability of a flow

being exceeded in any one year and for Lognormal

distribution it becomes:

q —
P(Q2Q,) = 1 ~ e L exp|- 1 (198 97MY) 149
Y _‘——"“_UY
.  BE (2.17)
i.e.
P( Q 2Q;) =1 - CDF (2.18)

In which P(Q >Q1) = Probability that the flow, Q,
will be exceeded in any one year
given the distribution with mean, HY

and Standard deviation OY.

He further said that for n~ years, where ne is the
F
expected project life, that the likelihood of flow Q

not being exceeded will be expressed as:

PL=(-P@soN"F ... . (2.19)

2.4.4 COMBINED PROBABILITIES

Combining probabilities which could be in the form
of combining prior weights or posterior weights with
its probability density functions of two distributions
was expressed by Russell (1982). 1In explaining this
he used an example based on peak flood regime on a river

and assumed that this river could be featured with
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one or other of the probabhility distributions shown in
Fig. 2.2, An additional assumption was made that either
of the distributions is the correct one, Based on these
assumptions theprobabilities for the two distributions

were combined as follows:

P, (Q$Q) =W, Poo+W, Pl .o ... (2.20)

In which ¥ (Q £ Q)

] probability of a flood of magnitude

QJ exceeding or equalling Q;

Q = vyariable,
Q, = design magnitude
W = probability that distribution

1 is correct,
Ll
d] = WLN B HLN i.e. this could be equal
to the prior or posterior
probabilities respectively depending
on its application and it has

been assumed to be the Lognormal

distribution;

ﬂz = probability that distribution 2 is
coxrect:
W, = WG = H; i.e. this could be equal to prior or
posterior probability respectively
depending on its application and it

has been assumed to be the Gumbel

distribution,

P]] = probability that Q] will be exceeded using

distribution 1,
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= probahility density function for Lognormal
distribution, fu(u);

P]2 = probability density function for Gumbel

distribution, f“(w)'

He further stated that W, and W, may be considered as

] 2

weights. Their summation is equal to 1.0.

Distribution 1
Distributicn 2
o=
.a /
c
@D
o
/f
T
2 Bt
L ~
g = \\~ Arﬂlzﬁl
o
& - .3
) S ——

Peak Flow

FIG. 2.2: COMPOUND DISTRIBUTION

2.4.5 PEAK DESIGN FLOODS

According to Gumbel (1958) the initial distributions

of floods are exponential and that the probability of

a flood being less than Q is
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¢ (_Ql = exp - E_ aC(AQ - UG) " .. (2.2))

This eqn (2.21) is based on the statistical theory
of floods and that if this theory holds he gave that

the obseryved floods will be estimated as

Q“D 4 — ... - e s (2.22)

In which Q = observed flood;

UG = post probable annual flood after

differentiating eqn (2.21) twice,

W = rednced variate.

The parameters a. and UG are parameters of the

estimate and Gumbel (1958) estimated them to be:

D. =M - W
R O (2.23)
“e
and
—= (2.24)
&(' 0“

where HQ and UQ are the sample mean and standard

deviation;

HN and UN are the mean and standard deviation

of the reduced values obtained from

the solutions of
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m

—_—

N*J LR L (_2.25)

Indeed, according to Benjamin and Cornell (1970) the

parameters uc

and U

c could be determined more directly

using eqns (2.26) and (2.27), respectively without

having to go all this steps that might create one mistake

or the other, i.e.
a 2202 - (2.26)
G o
Y
UG HY 0.527 RV . vin Kdwdd)

We see that eqn (2.
the right to be in
will give very low
be the peak design

an approach due to

22) did not have the parameters on
their exponential form and as such
peak flows which could not possibly
floods. 1In the body of the text

formulations from the reduced variate

in Benjamin and Cornell will be used. This determination
is for the evaluation of peak design floods in Gumbel

distributions.

2.4.6 SIMPLE RISK OF FAILURE

Yen (1970) treated the statistical theory that
form the basis for theevaluation of the simple risk of
failure involved in hydrologic designs by invoking

"the theory that the sum of the probabilities of occurrence

and nonoccurrence of an event is equal to unity i.e.
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P (Q > Q]) + P (Q < QJJ. & T ase o3 02.28)

To be able to evaluate the simple risk involved in
any hydrologic design he derived a number of steps

as follows:

(i) Interprete the probability of the variable,
Q, being equal to or greater than the

variate, Q], in each year as:

g ¥ «ax £2:29)

n..;i.-d

P (Q2Q,) =

where T is the return period in vears and he defined
it as the average length of time in which statistically

0, will be equalled ox exceeded once and only once.

-

(ii) In natural hydrologic phenomena Q is
usually a continouns variable, as such, the
probability of Q = Q] is zero and

P(Q3Q) +PQs€Q) =1.0 ... .. (2.30)

(iii) Following the definition of return period,
then the probability of Q < Ql for each

vear will become:

P(QgQ) =) - v s (2.31)

An assumption was made from the beginning that the
occurrence of the events Q was independent from one

another and as such the probability of ocurrence of



23

Q< Q] for each year for the entire period of n_— years

F

becomes:

P'F (Qs Q) =P (@QsQ) =0 -p"F ... (2.32)

Therefore, applying the theory of the sum of probabilities
of occurrence and nonoccurrence of an event to eqgn

(2.32) will give his Jefinition of simple risk of failure
which he defined as “the probability of occurrence of

the variable, Q, greater than the design magnitude, Q],

which is also equal to the chance of nonoccurrence of

Q§ Qs i.e.

Risk = P (@ > Q) =3 - (1 -‘?)“r cee . (2.33)

It is this definition of simple risk of failure of
hydroleogic designs for hydraulic structures that is used

for its estimation.

2.4.6 PREVIOUS FINDINGS ON FLOOD PROBABILITY ESTIMATION

From the review of the work that has been done on
the problem for flood probability estimation, it is
important to point out that flood probability estimation
has received little attention and when it has to be a
case in Nigeria little or no attention at all,
Researchers have concentrated on flood probability
estimation without showing ways of estimating maximum
floods based on Baves' theorem in situations where data

are insufficient or where there are an obstruction to
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the riyer or stream flowing capacity thereby affecting
its daily water level. It is the realization of this
neglect particularly in Nigerian situation where there
are little or no Tecords at all that necessitated the
investigation for the development of a procedure for

estimating maximom floods based on Bayes' theorem.



CHAPTER 3
VERIFICATION OF HYDROLOGICAL DATA AND SELECTION

- - OF TYPES OF DBISTRIBUTION
3.1  INTRODUCTION
This chapter has been divided into two broad

sub~chaptrers with a second chapter Being divided into two

sub~chapters again. The divisions are as follows:

(i) Verification of hydrological data;
(ii) Selection of types of distributions for the
two sets of data (1955-1980) and (1982-1987).

.

°3,2  YJERIFICATION OF HYDROLOGICAL DATA

i, 3.,2.1 INTRODUCTION

In hydrological designs a good design calls for

a good data and vice-versa. 5o the first thing that
" need to be done before actual work is started is to
“@;&J cellect and verify the hydrologic data to be used., These

data were to be collected for river Benue at Numan,

. [
- Numan is a town in Gongola State of Nigeria as shown in

Fig. 3.1. Gongola State has its Eapital city as Yola

and Numan is about ]00£m North—west of Yola. Numan was
chosen because (a) tﬁe data were mostly available;

(b)Y It is5 in one of the two major rivers in Nigeria; and
(¢) It has not had most qf the artifical interruption like
the construction of 2 dam ete unlike other sites downstream

of river Benue. Fig. 3.1 as to be mentioned in Section

s
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3.2.2 was collected from Upper Benue River Basin

and Rural Development Authority, Yola (UBRBRDA).

After the data collection there were disagreements
of flood discharge data and rating curves for river
Benue at Numan that came from different departments.
Certain steps were taken to solve the problem acruing
to each hydrologic data, and adopt the most suitable.
The steps taken in carrying out these entails visiting
various hydrological departments and coming home to

analyse these data. These were done as follows:

3.2.? COLLECTION, ANALYSIS AND ADOPTION OF DATA

The first department visited was UBRBRDA, and the

data collected from this department include:

(i) Fig. 3.1 - Showing location of river Benue

at Numan;

(ii) Appendix I - Showing the construction of a

dam in 1982 at Lagdo in the Camerouns;

(iii) Table 3.1 =~ Showing initial flood discharges
for river Benue at Numan for the period

(1955-1980),

Use were made of these informations collected from
this department as follows:Fig. 3.1 was only used showing
the location of river Benue at Numan as aforementioned

in Seetion 3.2.1. The use of Appendix I is to be
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mentioned later in this section after visitation of

other departments because it constitute a total

obstruction to the river flowing capacity and no design

will be possible without its consideration. Table 3.1
containing initial flood discharge for river Benue at

Numan was not used because the flood discharges in cumecs
for the years 1978, 1979 and 1980 and also for the years
19741 and 19872 were continuously 25600 and 2604 respectively.
This data though collected by UBABRDA is from Inland
Waterways Division, lokoja Eranch (IWD). This in

hydrology can not be used for any design and it became

necessary that a good source of data, more reliable and

off this error be resorted to.

Better results were obtained from the Federal
Department of Water Resources, Mando kRoad, Kaduna, for .
the period (1955-1980). This data though ccllected by
the IWD was used by "Isu Associates (Nig.) Ltd.

(Consulting Engineers and Planners)" through the
Federal Department of Water Rescurces,; Mando Road, Kaduna

and is shown in Table 3.2. Though it provided the

solution to discharges but there was a problem of not
showing any daily water level. This created a problem
of not being able to correlate their rating curve shown

in Fig. 3.2 with their discharges. Secondly, there

were no points on this rating curve. This rating
curve was to be compared with the ones plotted from

data collected from IWD, to find whether they have the

same datum or are any place the same.
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From information collected from IWD, there

were problems because there was only on€ rating

table available and a2lso some of the readings from

the available data were discovered to be in feet
instead of metres. The main problem with this rating
table is that it has for a maximum water level of 8.03m
it gives a discharge of 4310 cumecs and as such all
readings of water level above 8.03m were given a
discharge of greater than 4310 (>>4310) cumecs. This
cannot be used for any hydrological design and their
came up an urgent and dare need to plot the available

stage-discharge in that station. This was done using

Tables 3.3 and 3.4 for rating curves numbers 1 and 1l

of Fig. 3.3 respectively following the work of Wilson
(1981) who defined rating curve as a graph drawn
connecting the water level elevation, or stace of a

river channel at a certain-section with the corresponding
discharge at that section. From the results of the
plotting it was disccvered that the IWD, has two

rating curves plus the rating table.

The first ratinc curve, No 1, was for the period

(1955-1972) before the zero gauge was dropped by
10ft on 14 April, 1973, to forestall negative readings.
Moreover, the information collected within this

period were the ones in cubic feet per second. So
they were converted into cumecs before being used

for plotting as shown in rating curve, number 1 of

Fig. 3.3, and also Table 3.3. Table 3.5 containing



32

stage-discharge for river Benue at Numan for the
periocd (1955-1987) is obtained from this department.

The next thing beccmes to make use of Appendix I.

From information collected from UBRBRDA, it was
discovered that a dam had been constructed on river

Benue at Lagdo in the Camerouns in 1982 and became
fully operational in 1984 as shown in Appendix I.
This dam which information was given in a seminar

paper presented at Ilorin, by Normand (1984) is said

to have a live storage capacity of 4700 million cubic
metres. It has indeed added to the low flood discharge
capacity of this river for the period (1982-1987). Based
on this, the data was divided into two major sections as
shown in Table 3.5. The first section, 'B', implying

basic data before impoundment of the rifer is for the
period (1955-1980), the additional section to this

section, 'Bi" implying an additional data to the basic
data before impoundment is for 1981 only, and the second

section, 'A', is for the period (1982-1987) being

actual data after impoundment of the river upon which
the designs fcr peak flocd discharges and risk of failure

will be based.

3.2.3 CONCLUSION:

It is observed from Tables 3.1, 3.2, and 3.5 that
Table 3.1 did depart much from other ones and that

Table 3.2 . stopped at 1980 while only Table 3.5 did
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reach upto 1987 and was the only one with water level

of the river., As a result of critical analysis of data

the maximum discharges for the period (1955-1987)

were estimated and are presented in Table 3.5.

Also observed from Figs 3.2 and 3.3 was that the

rating curve used by lIsu Associates (Nig.) Ltd

(Consulting Engineers and Planners) was quite
different both in datum and every other aspect from
that usec by Inland Waterways Division. From analysis

the rating table fitted into rating curve number II
of Fig. 3.3 and was adopted as the most recent and

comprehensive.
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TABLE 3.1 FLOOD DISCHARGE ON RIVER EBENUE AT NUMAN
FROM DATA OBTAINED FROM UPPER BENUE RIVER
BASIN & RURAL DEVELOPMENT AUTHORITY, YQLA

NO YEAR  DATE/MONTH MAXIMUK DISCHARGES IN
(1) (2) (3) (1)
1. 1955 14 /10 cig
2. 1956 21/9 5580
3. 1957 9/9 3
a. 1958 28/9 4180
5. 1959 26/9 6927
6. 1960 2479 7800
7. 1961 15/9 7085
8 1962 15/9 222
9. 1963 5/9 90C 9
10. 1964 1/10 49%2
11. 1965 10/9 5046
12. 1966 15/9 6125
13. 1967 10/9 43€)
14. 1968 16/9 7123
15. 1969 4/¢ 99¢ 4
16. 1970 19/9 95¢3
17. 1971 10/39 2604
18 1972 10/9 2604
19, 1973 26/9 4412
20. 1974 22/8&16/9 431D
21. 1975 26/9 5200
22 1976 23/8 4507
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TABLE 3.1 (contd.)}

NO.

YEAR DATE/MONTH MAXIMUM DISCHARGES
IN CUMECS
23 1977 9&10/9 4450
24 1978 12 & 14/9 >5600
25 1579 26-13/881-7/9 25600
26 1980 28-31/851-10/% >5600
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TABLE 3.2 - FLOOD DISCHARGES ON RIVER BENUE AT NUMAN
FROM DATA OBTAINED FROM FEDERAL DEPARTMENT

CF WATER RESOURCES, KADUNA, FOR THE PERIOD
(1955-1980)

N0  YEAR  DATE/MONTH ~  MAXTMUM DISCHARGES
' IN CUMECS
(1) (2) (3} (4)
1. 1955 14/10 6657
2. 1956 - 22/9 5580
3. 1957 9/9 5370
4, 1658 28/9 4176
5. 1959 26/9 - 6987
6. 1960 2482579 - - . . . 7800
. 1961 . 18/9 : 7088
8. 1662 . 15/8 . 6712
9. 1963 5/9 5000
10, 1964 ; 1/10 - 4992
11. 1965 9-11/9 5046
12, 1966 15/9 : 6135
13. 1967 ' 10/9 - 4360
14, 1968 : 15/9 7136
15. 1969 < 30&31/8 - ' 8165
16. 1970 159/6 : 9595
17. 1971 o - —_— -
18, 1972 23/8 2604
19. 1973 26/9 _ 4417
20. 1974 : 13,8 ; . 4603
21, 1975 1279 | 9596

22. 1976 23/8 . 4500
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TABLE 3.2 (contd.)

NO YEAR DATE/MONTH MAXIMUM DISCHARGES
IN CUMECS

23, 1977 14/9 6869

24, 1978 €/9 7421

25. 1979 3/9 5781

26, 1580 3/9 6137

- Implies no data for 1971.




2 A

TABLE 3.3 STAGE-DISCHARGE FOR RATING CURVE NO: . 1

FOR THE PERIOD (1955-1872) FOR RIVER BENUE
AT NUMAN FROM IWD, LOKOJA BRANCH

NO  YEAR DATE/MONTH "7~ WATER  MAXIMUM DISCHARGES
LEVELS N IN CUMECS

(1) (2) (2) (4) (5)

1. 1955 14/10 6.41 _ 6657
2., 1956 22/9 5.98 5580
3. 1957 9/9 5.89 | 5370
" 4e - 1958 . 28/9 5.32 . 4176

 5;: 1959 26/9 | 6.51 ; 6987

6. 1960 24825/9 €.80 7800

7. - 1961 15/9 €.62 7088

8. 1962 15/9 €.24 6212

9. 1963 5/9 712 . 9000

0. 71964 1/10 5.72 | 4992
1. 1965 9-11/8 5.75 | 5046

12, 1966 15/9 6.21 6135

. 13, 1967 10/9 5,19 | 4360
140 1968 15/9 6.43 7136
45, 1969 30831/8 6.76 8165

16, 1970 19/9 7.15 o 9595 |
170 1971 -

718, 1972 23/8 .93 . 2604

= implies no data for 1971.
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TABLE 3.4: STAGE-DISCHARGE FOR RATING CURVE NO I3

FOR THE PERIOD (1973-1980) FOR RIVER BENUE
AT NUMAN FROM IWD, LOKOJA BRANCH '

NO YEAR DATE/MONTH - . WATER  MAXIMUM DISCHARGES

LEVEL IN IN CUMECS
METRES
(1) (2) (2) (4) (5)

1. | - FROM RATING 3.00 ~10.00
2. L 4,00 . 195.00
S W | oo . 5.00 679.00
Ca. © 6.00  1495.00
 3°35; R . 7.00  2630.00
6. | Y . 4250.00
7. 1973 26/9 |  _; 8.26":. 44412.00
8. 1974 13/9 5{ 8.38 4603.00
_e., 1975 12/ 10.09 .. 9596.00
SUq0r 1976 2a/e 0 8.20  4500.00
11, 1977 14/9 T 9.24  6869.00
12. 1978 6/9  o.a3 7421.00
13. 1979 3/9 8.83 - 5781.00
14. 1980 3/9 o e.er ~ 6137.00
745, 1981 30-31/8812-27/9  8.16 T 4480.00
16. 1982 S o12/8 - 7.95 7 . 4160.00
17. . 1983  22/9 7.44 " 3280.00
18. 1984 . 30/9 6.84  2440.00
19, 1985 11/9 X 7.75 3840.00
20° 1986 .  27/9 8.02 4240,00
29 1987 4/9 6.82 . ..  2420.00

Note: The maximum discharges from No 1 to 14 were used
in plotting Fig. 3.2 while No 15 to 21 were read
out from Fig. 3.2 using their daily water levels.
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TABLE 3.5: STAGE-DISCHARGE FOR RIVER BENUE AT NUMAN
DIVIDED 1NTO SECTIONS FROM INLAND WATERWAYS
DIVISION, LOKOJA BRANCH

'NO  SEcT- YEAR  DATE/MONTH -~ WATER  MAXIMUM
ION - LEVEL IN DISCHARGES
METRES ° IN CUMECS

(1} (2) {3} {4) o (5) ' - (8)
1. 1955 14/10 6.41 6657
2. 1956 22/9 5.98 5580
s 1957 9/9 5.9 © 5370
 4, | 1958 28/9 5.32 4176
5. 1959 26/9 6.51 . 5987
6. 1960 2482579 6.80 7800
1. 1961 15/9 6.62 7088
8. 1962 15/5 6.24 6212
- 1963 5/9 7.12 9000
| 0. 1964 1/10 5.72 4992
o1, 1965 9-11/9 5.75 5046
S 42, B 1966 15,9 6.21 6135
13, . 1567 10/9 T 4360
e, 1968 15/9 . 6.43 7136
| s, 1969 30231/8 6.76 . 8165
g '_ 16. 1870 18/% 7.1% . | 9595

 '17. 1971 - - -

18, 1972 10/9 3.93 2604
19. - 1973 26/9 8.26 2412
20. | 1974 13/9 8.38 4603
21. 1975 12/9 10.09 9596
22, 1976 23/8 8.20 4500

23, 1977 14/9 %.24 o 6869



a1
TABLE 3,5 (CONTD.)

‘KO SEC- YEAR DATE/MONTH . - . . WATER  MAXIMUM
- TION ‘ LEVEL IN DISCHARGES
METRES IN CUMECS
”:'24 ' . 1978 6/9 . 9.43 o T421
25 1979 3/9 8.83 5781
26. - 1980 3/9 o 8.97 - 6137
27 B, 1981 30-31/88 8.16 4480
i R22W/
28. 1982 12/8 . 7.95 4160
29. 1983 22/9 - . 7.41 | 3280
30 A . 1984 30/9 - 6.B4 ' 2440
31 , 1985 11/9 _ 7.75 - 3840
32, ¢ 1956 27/9 8.02 ' 4240
33, 1987 29 6.82 2420

B implies Basic data, B, implies additional data to
basic data, A implies Actual data after impoundment,

and - implies no data for 1971.

o



3.3 SELECTION OF TYPES OF DISTRIBUTION

3.3.1 INTRODUCTION

The "Two-parameter lognormal distribution"

and the "Gumbel extreme value distribution" were
adopted for the study. They are two-parameter
types of distribution and they are used following

the work of three researchers: Bodo and Unny (1976)

recently in their example of "Prior Distributions™

recommended the two-parameter types of distribution
and gave their reason that "three-parameters forms

were not studied because of the difficulties

introduced by the third parameter". Russell (1982),
most recently in his work recommended and used the

two distributions and the reason for his
recommendation/usage is that the two-parameter

type of distribution has less problems associated
with it than the three-parameter type. As

a result, analyses were carried out on these two

distributions for the two periods (1955-1980)

and (1982-1987).
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3.3.2 ANALYSIS OF DATA FOR THE PERIOD (1955-1987)

3.3.2 .1 INTRODUCTION:

In this section an initial probability plotting
test was to be carried out for the two distributions
and if they accept the sample data there will be no need
for therigorous goodness-of-fit test. This first

probability plotting test is carried out as follows:

3.3.2.2 PROBABILITY PLOTTING FOR GUMBEL EXTREME VALUE
DISTRIBUTION AND TWO PARAMETER LOGNORMAL

DISTRIBUTION FOR THE PERIOD (1955-1980)
.

The procedure in carrying out this test is to use
eqn (3.1) to obtain the common probability, P_s shown in
Col. (4) of Table 3.6, This probability is multiplied
with 100 to get the plotting positions to be used on the
abscissa as shown in Col. (5) of Table 3.6. Equation

(3,1) is as follows:
P - i-1 (3.1)

In which n = sample size:
i = order of samples;

Pr = probability,.

Ever before this the flood discharges, Q(i), must have
been arranged in ascending order with the lowest discharge
at the nth position and the highest discharge at the

first position, as shown in Col. (2) of Table 3.6. The

next thing, is to do the plotting for both the Gumbel
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TABLE 3,6~ PROBABILITY TEST FOR FLOOD DISCHBARGES FOR

THE PERIOD (1955-1980)

- QOrder Q(l) | Y(1)=1HQ(1) Pr - 2 ; i loopr
- (i) -
CUMECS .. - CUMECS
) (2) (3) (4) (3)
231, 3596 9.17 0.02 2
2. 9595 9.17 0.06 6
.. 3. 3000 9.10 0.10 10
4. 8165 9.0l 0.14 14
‘5. 7800 8.96 0.18 . 18
6. 7421 8.91 0.22 - 22
7. 7136 8.87 0.26 26
8. 7088 8.87 0.30 -1
g, 6987 8.85 "0.34 3%
130, 6869 8.83 0.38 . 38
J33, 60657 8.80 0.42 - 42
a2, 6212 8.73 L 0-46 46
13, 6137 8.72 0.50 . 50
14 6135 8.72 0.54 . 54
as. 5781 B.66 0.58 © 58
16, 5580 8.63 .62 . 62
17, 5370 8.59 0.66 - . 66
18, 5046 8.53 - 0.70 70
A9, 4992 - 8.52 0.74 74
20 4603 B.43 0.78 .78
21 4500 B.41 0.82 - 82
22 4412 8.39 0.86 86
23, 4360 8,38 0.90 ' 90/ff
24, 4176 8.34 0.94 94!
25, 7.86  0.98 - - 98

2604
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extreme value distribution and the two parameter lognormal
distribution uwsing their respective probability papers.

It is a plot of discharge, Q, on the ordinate from Col.(2)
of Table 3.6 against the probability that has been
multiplied by 100 on the abscissa, from Col. (5) of the

same Table 3.6.

The plotting for Gumbel distribution is shown in
Fig. 3.4 which is on Gumbel extreme distribution probability
paper, and the plotting for two parameter lognormal
distribution is shown in Fig. 3.5 which is on ordinary

lognormal probability paper.

3.3.2.3 SUMMARY

A critical viewing of Fig. 3.4, will show the plotting
of the sample data to have a fair straight line slanting
from left to right and unbounded too, and as such the
sample data is said to follow the extreme value distribution.

oe
The plotting from Fig 3.5 is seen to,a bit in a

straight line slanting f%cm left to right 1like that of the
Cumbel and wnbounded too at the two extremes similar to
the findings of Fisher and Tipeft in Kite (1978). Hence,
the sample data is concluded to fit the two parameter

Lognormal distribution.
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3.3.3 ANALYSIS OF DATA FOR THE PERIOD (1982-1987)

3.3.3.3 INTRODUCTION:

In this section like in the first section an
initial probability plotting was carried out but
if it does not accept the sample data, other tests
will then be carried ovt for the two distributions.
How the probability plotting tests for the two

distributions were carried out are as follows:

3.3.3.2 YROBABILITY PLOTTING FOR GUMBEL EXTREME
VALUE DISTRIBUTION AND TWO PARAMETER LOGNORMAL

DISTRIBUTION

The procedure in carrying out this test is to
first of all arrange the flood discharges from Col.(6)
of Table 3.5 for the period (1982-1987) in ascending
order with the lowest discharge at the nth position
and the highest discharge at the first position, as
shown in Col.(2) of Table 3.7. The next thing
is to compute the common probabilities (Pr) for

carrying out the test,

Using eqn (3.1) and substituting vaiues accordingly,
the common probabilities were obtained as shown in
Col. (4) of Table 3.7. This probability is multiplied
by 100 to get the plotting positions. to be used on the
abscissa as shown in Col. (5) of Table 3.7. The next
thing is to do the plotting for both the Gumbel extreme

distribution probability and the Two parameter lognormal
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distribution probability using their respective probability

papers,

As mentioned in section 3.3.2.2 it is a plot of
discharge, Q, on the ordinate from Col. (2) of Table 3.7
against the probability, Pr' that has been multiplied by

100 on the abscissa, from Col. (5) of Table 3.7,

TABLE 3.7 : PROBABILITY PLOTITING TEST FOR FLOOD DISCHARGES
FOR THE PERIOD (1982-1987)

(i : - i = 3
Order Q ) Y(l) s 1In Q(]-) P -{1 ) IOOP
i Tr n T
CUMECS CUMECS
(1) €2) (3) (4) 5
] 4240 8.35 0.083 8.3
2 4160 8.33 0.250 25.0
3 3840 8.25 ) 0.417 41.7
4 3280 8.10 0.583 58.3
5 2440 7.80 0.750 75.0
6 2420 7.79 0.917 91.7

The plotting for Gumbel distribution is shown in
Fig. 3.6 which is on Gumbel extreme distribution probability
paper and the plotting for two parameter lognormal
distribution is shown in Fig. 3.7 which is on Ordinary

lognormal probability paper.
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Following the work of Fisher and Tipett the
two plottings in Figures 3.6 and 3.7 though
unbounded at the two extremes but none seems to have
a straight line slanting from left to right and as
such does not fit into the sample data and immediately
calls for the following other tests to be carried out

for the two distributions as follows:

i) Chi-squared test statistics for both
distributions

Kolwmogorov-Smivnov (K-S) test statistics for

L]
L]
r

both distributions.

However, to be able to carry out these other rtests the
first thing that need to be done is to estimare the
mean and standard deviation of these period (1982-1987)
as the basic parameters of the tests for the

distribontions.

3.3.3.3. MEAN AND STANDARD DEVIATION VALUES FOR THE
VARIABLE, Q, FOR THE PERIOD (1982-1987)

Employing eqn (3.2) and substituting the flood
discharges from Col. (6) of Table 3.5 for the period
(1982-1987), the mean value is obtained as shown in
Col, (2) of Table 3.8. The formula is as follows:

M F _J_
n

Q SR § e (3.2)

=

il I~
2



B3

In which Qi = the given sample data

n = size of data

Similarly, the formula for the most used parameter
of dispersion called the standard deviation which was
used for flood discharges lasting the period (1982-1987)
from Col. (6) of Table 3.5. The result of the computation
is shown in Col., (3) of Table 3.5 for the estimation
of the standard deviation valuve. The formula is as

follows:

crw bm  kded)

in which OQ = standard deviation for the variable Qi

After calculating the mean values and the values
of the standard deviation for the period (1982-1987)
using eqns (3.2) and (3.3) respectively, a next step
was taken to derive the natural logarithm of these

values,

To obtain the natural logarithm of the mean value,
eqn (3.4) was used on the mean value shown in Col. (2)
of Table 3.8, the result of which is shown in Col.(4)

of Table 3.8 and the formula is as follows:

IY=1:1 HQ ER e (3.4)
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In which My = natural logarithm of the mean values,
HQ' The procedure towards calculating the natural
logarithm of the standard deviation value is to first
of all, compute the coefficient of variation. This
was done using eqn (3.5) on the values of the mean and
standard deviation from Cols (2) and (3) of Table 3.8
respectively, the result of which is shown in Col. (5)

of Table 3.8. The formula is as follows:

Q o cae ok {3.5)

In which V. = coefficient of variation for the

Q
variable, Q.

After computing the coefficient of variation
shown in Col.(5) of Table 3.8, eqn (3.6) was employed
from Tung and Larry (1980) to obtain the natural
logarithm of the standard deviation value shown in
Col. (6) of Table 3.8 and the formula is as follows:

0y = (In (v§+1))5 o . (3.6)

In which oy = natural logarithm of the standard

deviation value for the variable, Q.
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TABLE 3.8 : MEAN AND STANDARD DEVIATION VALUES FOR

THE PERIOD (1982-1987)

No M. from UQ from from Vg from UYfrom
egn (3.2 eqn (3.3) eqn (3.4) gn (3.5) sun (3.6
CUMECS CUMECS CUMECS
(1) (2) (3) (4) (5) (6)
1 3397 750 8.131 0..221 0.218

In subsequent sections the actual tests are done starting

with the PDF test for Gumbel extreme value distribution.

3.3.3.4 GUMBEL EXTREME VALUE DISTRIBUTION

3.3.3.4.1 INTRODUCTION

To know whether the data available did follow
the Type 1 extreme value distribution called the Gumbel
extreme value distribution two further tests were carried

out as aforementioned and in the following order:

(i) Chi-squared goodness-of-fit test statistics

(ii) K-S test statistics.
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3.3,3.4,2 CHI-SQUARED GOODNESS-OF-FIT TEST STATISTICS
FOR GUMBEL EXTREME VALUE DISTRIBUTION
FOR THE PERIOD (1982-1987)

The Chi-squared goodness-of-fit test statistics,
which is related to the histogram deviations from the
predicted values, has a traditional formula given
as:

=] _Aijl_ o (3.7)

In which xz = the observed value of the Chi-squared

goodness-of~-fit test statistics;

Dj = number of observed values;
Ej = normal expected number of observations;
k = number of categories considered;
j = order of categories.
This is a test involving hypothesis testing.

Hypothesis testing is a conventional procedure for
drawing simple conclusions from observed statistical
data (Benjamin and Cornell (1970)). 1In this test the
observed value, xz. of the Chi-squared test statistics

is to be compared with its critical value, D obtained

1
from table at certain significance level, a, and

degrees of Freedom, v. If at a chosen significance
level and particular degree of freedom the critical
value of the Chi-squared test statistics is greater

than its observed value, the sample data is said to

fit into the distribution. This hypothesis test that
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it fits into the distribution is called the null
hypothesis and the test that it does not fit into the

distribution is called the alternative hypothesis.

The procedure in the test is to estimate the basic
parameters of the observed value of the Chi-squared
test statistics in eqn (3.7) starting with the number of

observed value.

The process in calculating the "number of observed
values" is to first and foremost put the flood
discharges into categories or classes based on the
limit that QJ £ Q £ Qz as shown in Cel. (1) of Table
3.9. Where Q] is the first interval and Q2 is the
second interval. Based on this limit, the flood
discharges from Col. (6) of Table 3.5 for the period
(1982-1987) were tallied into these class intervals
resulting in the observed values shown in Col. (2) of
Table 3.9, The next basic parameters to be computed is

the "normal expected number of observations".

To obtain the normal expected number of observations,

firstly, reduce all flood discharges standing as class

intervals into reduced variate, W, using eqn (3.8) i.e.

W = (Y - UG) a. .6 % (3.8)
In which W = reduced variate;

Y = 1nQ % e e (339X
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With the obtained reduced variate, W, go over to
Appendix Y and get the CDF, P“(w). Substituting the
obtained F“(wi) into eqn (3.10) accordingly, the normal
expected number of observation for each class interval
is found as shown in Col. (3) of Table 3.9. The egn

is as follows:

N [”ex(qzi’ " ?ex“’]i’]' N [P0y - Fu‘“ii’]‘ Ee
(3.10)

In which N = total number of samples of the distribution;

Fex(QZi) = CDF for the second interval for each

class;

Fex(Q]i) = CDF for the first interval for each

class;

Fw(wzi) = CDF for the reduced variate for the second

interval for each class;

Fu(w]i) = CDF for the reduced variate for the

second interval for each class.

The next thing that need to be determined is the

"normalized squared deviations",.

By substituting the computed values of the number
of observed values and the normal expected number
of observations for each class interval into egqn (3.11)
the normalized squared deviation values are obtained

as shown in Col.(4) of Table 3.9. Equation (3.11) is



written as:

Normalized

squared deviations E
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eea  (3,31)

TABLE 3.9 : HISTOGRAM INTERVALS FOR FLOOD DISCHARGES
FOR GUMBEL EXTREME VALUE DISTRIBUTION FOR
THE PERIOD (1982 - 1987)

Modelivormal (8.131,0.218%) WNormalized

Interval No of
for Q Observed A= 5.88, UG--8.03 expected squared
valuee no. of observations from gévistians
eqn (3.12)

CUMECS

) (2) (3) (4)
2400-3000 2 1.817 0.018
3aa0-364QaQ 1 2.146 0.612
36Q0<420a 2 1.070 0.808
4200-4800 1 0.463 0.623

I —
6 5.496 2.061=

The observed value of the Chi-squared test statistics is

ohtained as a summation of the normalized squared deviations

to be 2,061 as shown in Col. (4) of Table 3.9.

Having found theobserved value of the Chi-squared

test statistics,

the next issue of importance becomes the

critical value of the Chi-squared test statistics that

would be used in comparing its observed value.
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The critical value is obtained from Appendix III

as follows:
D, = xz g vae (3.12)

In which aa = significance level;

Vv = degrees of freedom;

v=%k-1r -1 Ca - (3.12(a))

k = no. of categories considered;
r = no. of parameters estimated from the

datag

D, is the critical value of the chi-squared
goodness-of-fit test statistics estimated
from Appendix III, using the 1 degrees of
freedom and 957 significance level of
test i.,e.

D = 3,84

= 2 ‘
1 7 X 0.95,1

Since the observed value of the Chi-squared (xz)-Z.Obl
is less than the critical value of the Chi-squared

2 §
D - =
(.J) xn,gs,} 3.84 accept the null hypothesis and

conclude that the data did follow the Gumbel extreme
value distribution. This is a one tail test. In the
next section the K-S test statistics will be dealt

with,
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3.3.3.4.3 K-S TEST STATISTICS FOR GUMBEL EXTREME

vALUE DISTRIBUTION FOR THE PERIOD (1682-1987)

This is a sééogd.g;antitativé goﬁdness-of;fit.test
statistics. It concentrates on the deviations betweep
the hypotﬁeéized cumulative distribution funectian,
(_'.QﬁI

F J and the observed cumulative histogram. This

Q

test Involves fiypothesis testing. In this test the

oBsgeryed value, is to be compared with the

D2Cmax)'

critical value, Dn,a’ of the K-S test statistics obtained
from table at certain significance level, a, and given
sample size, n. Tf at a chosen sigprificance level, o,
and given sample size, n; the critical value of the K-S
test statistics is greater than its obgerved value the
sample data Is sald to fit into the @istribution. This
bypothesgis test that it fits into the sample data is

. called the nmll hypothesis and the test that it does not
. £it into the ﬁiétribution is called the alternative

hypothesis,

The process in finding the observed value of the K-S
‘test gtatistics {'s started by given the eguation for the

comnlative histogram as follows:

F*(otH) .. Cee e (303

N1

) =

(i)

In whieh Q is the largest observed value in the random
variable, in the random sample of size, n. On substitution
of values into eqgn (3.13) the observed cumulative

histograms are obtained as shown in Col. (3) of Table 3.10.
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- The hypothesized cumulative distribution function
which was computed by first, reducing the variables,
chls vsing eqr (3.8) and with the obtained reduced ’

yariates, W, go to Appendix V and get the hypothesized

comolative distribution function, ?W(w(l)). This
given as eqn (3.14) i's as follows:

Ty @y = @™y - @ e . (3.14)
In which.F(Q(I)I = CDF for the variable, Q(l);

?H(H(})) = CDF for the reduced variate, W(l)

On substitution of walues inte egn (3.14) in the order
aforementioned, the hypothesized cumulative distribution
functions were obtained as shown in Col. (4) of Table
3.]0. With this ready, thé next thing becomes to

calculate the deviations, D between the hypothesized

2)

CDF and the observed cumulative histogram.

To compute the observed value (D ) of the

2{max)
K-S test statistics eqn (3.15} is employed. This
DZ(hax)’ i's described as the largest of the absolute
values of the n differences between the hypothesized
CDF from Col. (4) of Table 3.10 and the observed
cumulative histogram frem Col. (3) of Table 3.10 .
(sometimes called the empirical CDF), evaluated as

the observed values in the sample shown inm Col (5) of

Table 3.,10. This egn {(3.15) is given as follows:
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n

D, = Max | #* Q%) - ¥
i =]

Quﬁjlll... (3.15)

The result of the absolute deviations between Y*(Q(l))
and FQ(Q(ljl_are shown in Col. (5) of Table 3.10.

The largest discrepancy in Col. (5) of Table 3,10 is:

Gy —p @Gy |=|r*(2440) -¥

[F*(Q Q

= 0,312
Q(2440) | 31

and is the observed value of the K-S test statistics.
. The next thing is to obtain the critical value of the

K~S test statistics using Dn “ in eqn (3.16).
»

TABLE 3,3Q; K-S TEST STATISTICS FOR GUMBEL EXTREME VALUE
DISTRIBUTION FOR FLOOD DISCHARGES FOR THE
PERIOD (1982-1987)

Order Observed F*(Q(i)) Fq(Q(i)(B.J3l,U.2]82) D, from
(1) Qi) ;

from eqn. o,.=5.88, U,.=8,03 eqn (3.15)
(3.13) . =
gina - from eqn (3.14)
CUMECS

(1) (2) (3) (4) (5)
1 2420 0.167 F(2420)=F_(-1.402)=0.017  0.150
2 2440 0.333 F(2440)=F_(-1.354)=0.021 0.312%
3 3280 0.500 F(I280) =iy (F-200) = 9,507 0.007
4 3840 0.667 F(3840)=F (1.313)= 0.764  0.097
5 4160 0.833 F(4160)=F_(1.783) =0.845 0.012
6

4240 1.000 F(4240)-Fw(].895) = 0.860 0.140
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Eqn (3.16) is written as:

D . (3.16)

n,o ’ D2(ﬁax)
In which n = sample size;
o0 = significance level;
D = ¢ritical value of K-S test statistics;
DZ(maxI = observed value of K-S test statistics.
For an a level of 5 percent and a sample size of 6,
the critical value of the K-S test sratistics from

Appendix IV is D = 0,521, greater than D

6,0.05 2(max)

= 0.312. Therefore, the null hvpothesis need not be
rejected at this significance level, The variable, Q,
is said to follow the Cumbel extreme value distribution.
This is a one tail test, In the next section tests

for two-parameter lognormal distribution will be

treated,

3.3.3,5 TWO PARAMETER LOGNORMAL DISTRIBUTION
R IR S5 L 1 | INTRODUCTION

In this distribution, two goodness—-of-fit test
statistics were carried out and they are:

(i) Chi-squared goodness-of-fit test statistics

(ii) K-S goodness-of-fit test statistics,

The steps taken in carrying out these tests starting
with the chi-squared goodness-of-fit test statistics

are as follows:
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3.3.3.5.2 CHI-SQUARED GOODNESS-OF-FIT TEST STATISTIES

FOR TWO PARAMETER LOGNORMAL DISTRIBUTION
FOR THE PERIOD. (1982-1987).

The procéduré in caffying out this test was to first

of all put the flood discharges from Col.(6) of Table

3.5 for the period (1982-1987) into class intervals as
shown in Col.(6) of Table 3.11. The flood discharges

from Col. 6 of Table 3.5 for this period (1982-1987) were
then tallied into these class intervals, based on the limit
that Q, Q€ Q,. Where Q, is the first class interval

in each class interval and Q, is the second class

interval in each class interval. The results of the
tallies are the number of observed frequencies (values)

shown in Col. (2) of Table 3.11. Having obtained the

number of observed values, the next thing becomes to get

the "normal expected number of observations".

The normal expected number of observations was

obtained by first of all standardizing the flood
discharges standing as class intervals from Col. (1)
of Table 3.11 using eqn (3.17), i.e.
Y =
v " __"'M;"Y_ - = .. (3.17)
Oy
In which U = standardized variable.
with the standardized variables, U, go over to Appendix

IT and get the CDF for the standardized variable,

U, written F (U). Substituting all the obtained

standardized CDF in place of the reduced CDF in,egn (3.10)
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accordingly the normal expected number of observations

was found as shown in Col, (3) of Table 3.11.

The next basic parameter to be computed towards
obtaining the observed value of the chi-squared goodness~-
of-fit test statistics are the values of the

“"normalized squared deviations".

TABLE 3.11 ; HISTOGRAM INTERVALS FOR TWO PARAMETER
LOGNORMAL DISTRIBUTION FOR FLOOD DISCHARGES
FOR THE PERIOD (1982-1987)

o no of Mode): normal (8.131,0.218%) Normal-
S observed expected no of observatio ixed
for values s Re RS ANISETRELARNG squared

from eqn (3.10) deviation

CUMECS
(1) (2) (3) (4)
2400-3000 2 1.370 0.290
3000-3600 ] 1.932 0.450
3600-4200 2 1.380 0.279
4200-4800 1 0.653 0.184
6 5.335 1.203=x"

The normalized squared deviation values of each
category were computed by employing eqn (3.7) and
substituting the values of the number of observations from
Col.(2) of Table 3.1] with the corresponding normal

expected number of observations from Col. (3) of Table
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3.11, The resulting normalized squared deviation
values are shown in Col, (4) of Table 3,11, The next
thing is to calculate the observed value of the Chi-squared

goodness—of-fit test statistics.

The observed value of the Chi-squared goodness-of-fit
test statistics was computed by emwploying egqn (3.11)?
which is a sumcz2tion of the obtained normalized squared
deviations as s=own in Col. (4) of Table 3.1). The next
thing is to coco>ute the critical value of the Chi-squared
goodness—of-fit test statistics that would be used in

comparing the ¢*served value of the Chi-squared tests.

The critical value of the Chi-squared goodness-of-fit
test staristice was obtaincd by employing eqn (3.12(a))
i,e. v=K=-r=-1=4~-2-1 =1 and eqn (3.12) i.e.

D, = %* . The critical value of the Chi-squared so
v, o

obtained from A;pendix III which is D = 3.84

2
1 T X 0.95,]

is compared witl the observed value of the Chi-squared

goodness-of~fit test statistics. Since x2 = ]1.203 < D,

- XO.BS,I = 3,84, accept the null hypothesis and

conclude that tksz sample data follow the two parameter

lognormal distrizution. This is a one tail test,

In the next section the K-S test statistics for two

parameter lognormal distribution is carried out as follows:
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3.3.3.5.3 K=5 GOODNESS—OF~FIT TEST STATISTICS FOR
I . TWO PARAMETER LOGNORMAL DISTRIBUTION

.~ FOR THE PERIOD (1982-1987)

The.pfocesé.tﬁwardé'ﬁﬁéafning tﬁé ﬁbsefved Qélue.
of the K-S test statistics ié to firét of all standardize
all the flood discharges from Col. (6) of Table 3.5 for
the period (1982-1987)} using eqn (3.17) of the
standardized variable . With the values of the
standardized variable so obtained, go over to Appendix I1X
and: get each.hypothﬂsized CDF, FuCU(i)) shown in Col.(4)
of Table 3.12, The formulations followed here is the
same as that of egqn {3.34), the only thing that in this
case the CDF for the reduced variate is now replaced
with the standardized hypothesized CDF, FU(U(i)) for
pli)

the standardized variable, . The next thing is to

compute the observed cumulative histogram.

The observed cumuiativé hiétogram, F*(Q(i)j was
determined by employing egn (3.13) and substituting
values accordingly. The results of the values o
- substituted accordingly into eqn (3.13) are shown in
Col. (3) of Table 3.12. The next thing is to calculate
the modul;s of the deviations between F*(Q(i}) and
Fa@“1?) using ean (3.15) is shown in Col. (5) of

Table 3.12,

The highest discrepancy in Col. (5) of Table 3.12
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. Yy - 5 0L ) )
D) (max) = | f*(g ) ?Q(Q(l )| |P*(24401.FQ{2&40}I 0.269

and 1s called the observed value of the K-S test statistics

which is D = 0,269, The next thing is to estimate
2(max)

the eritical value of the K-S test statistics using D o
]
in eqn (3.16). For an a level of 5 percent and a

size of 6, the critical value of the K-S test statistics

is D = 0.521 > D

6,0.05 2 (max) ~ 9-269.

TABLE 3.12: K-S TEST STATISTICS FOR TWO PARAMETER
LOGNQRMAL DISTRIBUTION FOR FLOOD DISCHARGES

FOR THE PERIOD (1982-1987)

Order Obsgryed Fx(Q(i)) FQ(Q(‘)} (8.131,0.218° b, from
(1) Q fzem 4in from egn (3.14) ia
CUMECS
(1) (2) (3) (4) (5)
1 2420 0.167 F(2420)=Fu(—l.55?)-1-0.9402
= 0.060 2.3107
2 2440 0.333 F(2440)=Fu(-1.519)=].09356
= 0.064 0.269%
3 3280 0.500 F(3280)-Fu(—0.162)=l—0.5644
= 0.436 0.064
4 3840 0.667 F(3840)-Fu(0.563) = 0.713 0.046
5 4160 0.833 F(4160)=Fu(0.928)= 0.823 0.010
6 4240 1.000 F(&Z&O)-Fu(l.015) = 0,845 0,155




70
Therefore, the null hypothesis need not be rejected
at this significance leyel. The variable, Q, is said
to follow the two parameters lognormal distribution

and as such can be treated as if it were normally

distributed. This is a one tail test.

3,3.3.6 CONCLUSIONS

From the results of the two goodness-of-fit

test statistics carried out, it would be wise to
say that the two parameter lognormal distribution fits
more into the sample data than the Gumbel extreme value
distribution becaunse of the large deviations between
their ohserved value and their critical value. Secondly,
all the observed value of the two parameter
lognormal distribution are seen to be lower than that of

the Gumbhel extreme value distribution, implying, that
more accuracy was achieved with the lognormal distribution

than with the Gumbel distribution.



CHAPTER 4

COMPOUND LOGNORMAL DISTRIBUTION

o SR N :
4.1 . INTRODUCTION
A compound distribution consists of combiﬁation off

the same type of distributions but with different parameters.,
By the different parameters of the distributions it |
implies, the low; probable and high values of the mean and
standard deviation and for an adequate combination of each
pair of mean value and value of the standard deviation, the
low, probable and high prior probabilities have been
eétablished. The low values are fhe one which are 90%
certain to be exceeded; the probable values are the best
guess, and the high values are the ones which are 90%

certain will not be exceeded. A compound distribution is

a product of the prior probability with any particular
combination of the mean and standard deviation subject to
normalizirs to make the sum of all the posterior probabilities

add up to uvaity.

Prior probabilities are initial probabilities aésigﬁéﬁﬁ
corfeéponding to areas under the normal curve. They are
assignéd tte low, probable and high prior probabilities__
and these correspond to 9 combinations. The next thing 1;;h

are the parsmeters of thedistributions.
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The different parameters of the distribution are
the low, probable and high values of the mean and
standard deviation. These three discrete values of the
mean and standard deviation will give a total of 9

combinations.

In other words, the compound distribution is made
up of 9 component distributions having each of it being
specified by the low, probable or high values of the
mean and standard deviation and weighted according to its
low, probable or high prior probabilities. In this

the three distinct values of each of the mean and the

standard deviation give a total of 9 combinations.

It is on the basis of this thal the posterior
probabilities are computed, using Bayes' theorem which
1s treated in this Chapier. By using Bayes' theorem,
the posterior probability of any particular combination
of the mean and standard deviatior is obtained by
muitiplying the individual probabilities. This is then
normalized to make the sum of all the posterior
probabilities add up to 1.0. The result of this gives
the most probable maximum flood dischbarges. The steps
taken to arrive at the most probable maximum flood

discharges are as follows:

(i) Assigning prior probabilities;
(ii) Assuming different parameters for the

component distribution;
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(iii) Obtaining the likelihocds

(iv) Obtaining the posterior probabilities.

4.2 ASSIGNING PRIOR PROBABILITIES TO EACH OF THE
COMPONENT DISTRIBUTIONS

As a first step towards assigning prior probabilities

to low, probable and high durations of the series let
us define what this low; probable and high prior
probabilities actually mean. The low probabilities are
- the ones which are 90% sure will be exceeded, the
'probables are the best guess and the high probabilities
are the ones which are 90% sure will not be exceeded,
These will give 9 combinations. It has been made so to
"correspond to the low, probablé and high values of the
mean and standard deviation, These three distinct
values of the mean and the standard deviation will give
a total of 9 combinaticns. Whereas according tc Russell
(1982) "the probability of any particular combination

of mean and standard deviation is obtained by multiplying
the individual probabilities and normalizing them to

make the sum of all the probabilities add up to 1.0",

So in order +to be able to assign prior probabilities

- to each of the component distributions of low, probable,,
/A

and high values of the mean and standard deviation, these

steps were followed:
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(i) Converting the percentage points at 90%, 50%
and 90% on a normal curve into decimal points
and making them the cumulative distribution

function, Fu(u), as shown in Col(2) of Table

4.1,

{ii) Using this CDF computed at the various points
go to Appendix IJ and get the value of
u — as shown in Col. (3) of Table 4.1

where u is the standardized normal variate

(iii) With this value of u so obtained we go to
Appendix VI to read the probability density
function, fu(u), as shown in Col.(4) of Table

2.1,
(iv) Sum all the computed PDF i.e. T fu(u).

(v} lLastly, a ratio of the first. probability
- densgity function, Iu(u), to the summed PDF,

qu(u); gives the low probability, A ratio of
the second PDF, to the summed PDF, qu(u), gives
the probable probability and a ratio of the
third PDF to the sum total of the PDF, gives

the high probability as described in eqn (4 .1)
and the results of the computation are shown

in Col. (5) of Table 4.1.

.fu(u)

Prior probability =
Efu(u)

. ooo(4.1)

in which f (u) = PDF;

qu(u) = summation of PDF,
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TABLE 4.1 - PRICR PROBABILITY FOR THE PERIOD (1955-1980)

: F,(u)% from u from f (u) from Prior proba=

normal curve App II". . App. . VI . . bilities from

s , . - ean (4.1)
(1) L2y o oo (3 0 L) S (5)

Low (L) Fu(u)L=90% UL=1.28 fu(“ﬂ= 0.176 Py = 0.234

= 0.9
Probable(P) F(u) ~50% U,= 0.00 1 (U )= 0.399 P, = 0.532

= (0.5
High (H) F,(w);=90% Uy = 1.28 £ (U,)=0.176 P, = 0.234
= 0.9

These prior probabilities are for flood discharges for the
' pericd (1955-1980) and as such need to be updated using the

- different parameters of the distributions. So the next thing

;. now is the derivation of the different parameters of the

distributions.

%.3.1 DERIVING THE LOW, PROBABLE AND HIGH VALUES OF MEAN AND
STANDARD DEVIATION - -

There were serious problems here of what to assume to be

the low, probable or high values of mean and standard deviation
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The Mean values, values of standard deviation,
natural logarithm of mean, coefficient of variation and
natural logarithm of standard deviation value for
flood discharges for the period (1955-1980) from Table
3.5 were determined by employing eqns (3.2), (3.3),
(3.4), (3.5) and (3.6) respectively and following the
same procedure as in Section (3.3.3.3). The results of
the estimates are shown in Table 4.2, The parameters
of the distributions for this period (1955-1980) has
been assigned the probable value because during this
period the river was not interrupted by the construction
of a dam or any major hydraulie structure obstructing
the natural course of river flow., So as shown in Table
4,2 the values from this perilod were taken as the

probable values. ,

The period (1982-1987) witnessed the comstruction
of the dam at Lagdo in the Camerouns from 1982. This
dam with a live storage capacity of 4700 million cubic
metres in order to bBe able to damp flood flow has been
given maximum release of J600m3/s for fleods with return
periods of upto 50 years Normand (1984). The
construction of a dam at Lagdo has indeed added much to
the low river discharges for this period (1982-1887),.
Due to this the low values for the mean and standard
deviation including their natural logarithms were

assigned from this period (1982-1987).
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The difference, 4, between the values of mean and
standard de?iation for the two periodé (1955-1280) and
(1982-1987) has been added to the probable vélues to
obtain the high valueS'of'meﬁn and standard deviation and
subsequently; using them were able to obtain the natural
logarithms of the mean values and values of the standard
deviation. The steps téken in obtaining this high values

of mean and standard deviation values are as follows:

To calculaté the nﬁtural logarithm  for the high
value of the standard deviation, the first thing to do is
to find the ratio of the value of the standard deviation
- to the value of the mean called the coefficient of
variation using eqn (3.5). On substitution of values of
" mean and standard deviation into this eqn (3.2) the
coefficient of variation for the high value of the
sténdard deviation shown in Col. (5) of Table;4;5was

obtained,

Using the coefficient of variations for the high
ﬁalue of the standard deviation from Col.{5) of Table
4.2 on egqn (3.6 ), the natural logarithm for the high
standard deviation value was obtained as shown in col.

(6} of Table 4.2.

Lastly, using the high . value of the mean
of the variable, Qj, shown in Col. (3) of Table4 .2 on
egqn {(3.4), the natural logarithm of the high mean value

was computed as shown in Col. (7) of Table 4.2,
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— THE LOW(L), PROBABLE (P) AND HIGH (H) VALUES

OF MEAN AND STANDARD DEVIATION FOR THE VARIABLE,

Q
No. Period M. from o. from V., from UY from HY from
edn(3.) 323 edn(3.5 en(z.0 ean(3.9
m3]5 m3fs m3/s
(1) (2) (3) (4) (5) (6) (7)
1 1955-1980 6249(P) 1730(P) 0.277(P) 0.272(P) 8.740(P)
2 1982-1987 3397(L) 750(L) 0.221(L) 0.218(L) 8.131(L)
3 A+P 9101(H) 2710(H) 0.298(H) 0.292(H) 9.116(H)
A = (P) - (L) i.e. (1955-1980) - (1982-1987) for the

mean and standard deviation values.

The next thing is to form the initial probability matrix
table for the 9-combinations of the 9 component distributions

which are as follows:

4.3.2 INITIAL PROBABILITY MATRIX

In this study, the mean and the standard deviation of the
logarithms of the annual flood peak values are each specified
by three discrete values: The low, probable, and high values.
These are assigned initial probabilities of 0.234, 0.532, and
0.234, corresponding to the areas under the normal curve at 90%,

50% and 90%. Similar values were also used by Russell (1982).
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The compound distribution is made up of 9 component
distributions, each specified by a mean and standard
deviation and weighted according to its probability. The
three discrete values of €ach of the mean and the standard
deviation give a total of 9 combinations. The probability
of any particular combination of mean and standard
deviation is found by multiplying the individual probabilities
and normalizing to make the sum of all the probabilities
add up to 1.0. The initial probability matrix is shown

in Table4 .3.

The next thing to do is to update the data of the
distribution using the initial probabilities and the
parameters of the component distributions. The steps
taken in doing this started on how to update the data

of the distribution.

TABLE 4.3 - INITIAL PROBABILITY MATRIX

iy L P H Marginal
probability

“j

1) (2) (3) (4) (5)

L 0.055 0.124 0.055 0.234

P 0.124 0.283 0.124 0.532

H 0.055 0.124 0.055 0.234

Marg-
inal 0.234 0.532 0.234
Probabil -

ity
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4.4, UPDATING THE DATA OF THE DISTRIBUTION

The data for the periocd (18955-1980) was used to
obtgin the type of distribution for the first set of
data needed for this "estimation of the most probable

maximuom floods"™ as shown in chapter four.

After getting the type of distribution, the need arose

. to update the data in use to recent date.

The dﬁta wés updated first by Bayesian anpalysis using.
'B' on 'Bl‘. This was exactly to compute the effect of
. this on the baéic data; B;'used for types of distribution.
During this exercise the result of the posterior
probabilities derived for the different parameters of
-.;the distributions was checked. It was noted that the
probable values have the highest posterior probabilitiés.
": These posterior probabilities would then be used as

prior probabilities on 'A", to check the same eifect

... (where A is the actual data used for types of distribution,

- ~ too but after the construction of the dam on river Benue

_ at Lagdo in theCamerouns). If any of the posterior
probabilities tends to one, as others tend to zero, that_

one is immediately assumed to be the probable parameters

of this distribution and will be used as the mosf probable

: maximum flood in determining the peak design flood given

its return period for use in design of any hydraulic structure,
In this chapter only the Lognormal distribution has.

been treated because it accepted the sample data more

than the Gumbel distribution and hence, better result
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is expected from nsing it.

4 .4.1 LOGNORMAL DISTRIRUTION

i
. }
i

In this distfibution the calculations were carried

out in two perspectives, namely:

{i) for single recorded peak flood;

(ii} for several recorded peak flows. ¢

. .The likelihoods as a component of the distribution for

single recorded peak flood will be treated first.

4.4.1.1  LIKELIHOOD FOR SINGLE RECORDED PEAK FLOOD
]
The likelihood: indeed; depends on the type of data
_ and for a single recorded peak flood; it is the height
.of the probability density function. Employing eqn
(2.11) i.e, |

1

L i1J(QE) = T ©%P| - } (Ing, - Myy

Q, oy (27)

and substituting the natural logarithm of the mean value
from Col.(4) of Table 3.8 and the natural logarithm of
the value of the standard deviation from Col.(6) of
Table3 .8 with the flood discharge for 1281 from Col,(6)

of Table 3.5, the singular likelihood for lognormal

i
S
I,
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distribution was obtained as shown in Col. (4) of
" Table 4,4 Having derived the likelihoods the next
thing is to compute the posterior probabilities which

~are conditioned on likelihoods.

£.4.1.2 POSTERIOR PRCBABILITIES FOR SINFULAR

RECORDED PEAK TFLOW

If the péak flow in one yeaf say 1981 wﬁs said to
be Qz, the weights could be updated using Bayes' theorem.
Bayes' theorem is the posterior probability and is a
product of the prior probability to a weighted

combination of mean and standard deviation called the

likelihood and normalizing to make the sum of the
po-terior probabilities add uﬁ to 1.0. They were
obtained by employing egn {(2.8) and substituting the
prior probabilities from Col. (5) of Table 4.1 and the
corresponding likelihoods from Col. (4) of Table4d .3
into it and normalizing with the product of eqns (2.9

to make the sum of the yposterior probabilities add up

to 1.0. The result of this computation for posterior

I e
]






