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PREFACE

Interest in discrete distributions has increased markedly
over the past two decades or so. These distributions are generally
studied in the context of the specific chance mechanisms in which
they take their genesis or in relation to classes defined by specific
mathematical or probabilistic structures. One of the major classes
of discrete distributions comprises generalized Poisson distributions
{GPDs).

It is well known that CGPDs are applicable tc diverse areas
e.g. in accident studies and in bacteriology and entomology. However,
relatively few discrete distributions are viewed as GPDs. It is
desirable to know which of the other numerous distributions presented
in the literature are GPDs. A clearer picture of the functional
forms and properties of this important class of discrete distributions
is invaluable.

This thesis discusses several aspects of generalized Poisson
distributions. Special attention is given to features which have
direct bearing on applications. Chapter 1 is 2 discussion of discrete
distributions in general. In Chapter 2 generalized Pcisson distributions
are discussed extensively. By invoking a thecrem which characterizes
GPDs by the property of infinite divisibility, some well known, and
a2 few apparently new, discrete distributions are shown 1o be CPDs.

Chapter 3 is about parameter estimaticn. The major methods
for estimating the parameters of GPDs are discussed. Attention is
then focussed on one particular GPD, the Poisson A inverse normal
distribution. For this distribution, a parameterization comprieing
orthogonal parameters is identified. Maximum likelihood equations for
estimating these parameters are presented. Some other estimators of

the parameters are also given.
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Chapter 4 discusses the problem of how to choose from several
plausible GPDs the one which best fits a given data-set. 1In
Chapter 5 the thesis is concluded with a discussion of the possible

directions in which further work on the subject matter can be pursued.
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SUMMARY AND GENERAL BACKGROUND



CHAPTER 1

SUMMARY AND GENERAL BACKGROUND

1.1 Summarz

Endowed with a wide and rapidly expanding literature, both in
diverse fields of applied science and in statistics, the subject of
Discrete Distributions offers a fascinating area for study and research.
The subject is commonly discussed in one of two ways. One is to
investigate in detail individual discrete distributions or specific
families of distributions for their mathematical and statistical
properties and for their natural applicaticns. The second approach is
to concentrate on a scientific problem that genperates or requires random
counts and then create and coordinate appropriate discrete models and
methods so as to arrive at a meaningful solution of the scientific problem,

This thesis is about a specific family of discrete distributions,
the generalized Poisszon distributions (GPDs) - their structural properties,
their applications, and alsc the methods for estimating their parameters.
To place the study in context, & discussion of discrete distributions in
general is given (Chapter 1). This includes a description of the major
families or classes. Then generalized Poisson distributions are discussed
extensively (Chapter 2). The derivation of one apparently new generalized
Poisson distributien i1s alsec given. Infinite divisibility characterizes
GPDs among lattice distributions supported on non-negative integers, and
this property dominates the discussion. The study then narrows down to
one particular GPD, the recently proposed Poisson A inverse normal (PIN)
distribution {Chapter 3), for whose parameters a new set of estimators are
presented, in addition to a re-appraisal of its structure,

An important aspect of GPDs which has received relatively little
attention in the literature is how to choose from a giveu set of
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plausible GPDs the one most appropriate for the situation. This problem
is briefly discussed (Chapter 4) in the context of future work. The
last chapter (Chapter 5) is a recapitulation and an outline of scme
ensuing problems which are subjects for further research.

The concept of generalized Poisson distributions has featured in
statistical literature over the years in one form or the other since the
early part of this century. GPDs are widely applicable e.g. in the
modelling of populations of plants and insects, and in accident studies.
However, in practice, relatively few discrete distributions are viewed
as GPDs and, due to various computational difficulties only a proporticn
of these have been adopted by practitioners., As has been noted by Fiacco
and McCormick (1968, p.1556), "a vital test and justification of any
body of theory of how to solve problems is the feasibility of computational
implementation and practical application", This forms the general
motivation for the thesis.

The Neyman Type A distribution in its usual form is Poisson V Poisson,
but can also be represented as Poisson V zero-truncated Poisson. The
latter form is apparently not widely known., Similarly the Polya-Aeppli
distribution, usually given as Poisson V shifted geometric, is in fact
identical with Poisson V geometric,

All mixtures of the Poisson distribution are overdispersed; so are all
generalized Poisson distributions, except the Poisson, which is trivially a
GPD having the Bernculli distribution as its cluster-size distribution.
Hence o§erdispersion is a necessary (but certainly not sufficient)
condition for a non-Poisson lattice distribution to be a GPD.

The quotient of the probability generating functions (pgfs) of
twe geometric distributions with parameters 8, and 82, 0<6, <8 <1,
gives the pgf of the geometric distribution-with-added-zeroces, a
distribution which is infinitely divisible and hence a GPD. Some other
infinitely divisible convolutions of pseudo-binomials are similarly

re-appraised and recast into conventional forms.
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All logconvex lattice distributions are infinitely divisible and
are hence generalized Poisson distributions. A subset of generalized
hypergecmetric distributions is identified as being logconvex. Its
members include the Waring, the shifted logarithmic, and the shifted
lost-games distributions.

All mixtures of the Poisson with infinitely divisible mixing
distributions are infinitely divisible. Some infinitely divisible
continuous distributions with support on the positive half real line
are listed, One of these is the reciprocal gamma distribution. Its
mixture of the Poisson is derived and shown to be closely related to
but simpler than the already known generalized-inverse-normal
mixture of the Poisson. The special case analogous to the
Poisson A inverse normal is discussed. Some other infinitely divisible
mixtures of the Poisson are also derived.

The Poisson A inverse normal, although only recently proposed,
has generated a considerable amount of literature. It is noted here
that its cluster-size distribution is a lost~games distribution. Its
two usual parameterizations are discussed and it is shown computationally
and theoretically that the maximum likelihood estimates of the parameters
in one of these two forms are asyptotically uncorrelated. For this form
also, the sample mean is a maximum likelihood estimator of one of the
parameters, A new estimator, the even-points estimator, is presented

for the other parameter.

1.2 Basic Definitions

1.2.1 Introduction

This section comprises scme of the basic definitions and the
related notation connected with the characteristic properties of
distributions. They are available in the literature but are set out

here because they will be assumed in the rest of the thesis. It should



be noted at the outset that, in particular, discussions of features
of most discrete distributions have been approached via their probability
generating functions.

Well-established abbreviations such as cdf for 'cumulative
distribution function', pdf for 'probability demsity function' (continuous},
pf for 'probability function' (discrete), i.i.d. for 'independently and
identically distributed', and inf div for 'infinitely divisible' will be
ugsed freely whenever their full meanings are unlikely to be in doubt.

The definitions and notation adopted for "generalized" and “compound”
distributions are those of Gurland (1957). All logarithms are natural

logarithms except where otherwise indicated.

1,.2.2 Random variable and distribution function

For a given probability space (R, A, Pr{*]) a random variable,
denoted by X or X(+), is a function with domain @ and counterdomain the
real line. The function X{') must be such that the set A s defined by
A = {w: X{w} € r} belongs to A for every real number r. A random
variable X is said to be discrete 1f the range is countable; otherwise
it is said to be continuous.
The cumulative distribution function (cdf), or simply the distribution
function, of a random variable X denoted by Fx(x), or F{x), is defined tc

be that function with the domain the real line and counterdeomain the

interval [0, 1] which, for every real number x, satisfiles

Fx(XJ = prlw: Xw} € x]
= Prl¥ < x)
= ) f£(x), B being the range of X. (1.2.2.1)
a€ 8

The function f(x), in the continuous case, is F'(x), the derivative of
F(x) with respect to x. It is called the probability density function.

In the discrete case, f(x) can be regarded as the Radom-Nikodym



"derivative" of F(x) with respect to a counting measure. In this case,
f(x) is usually referred to as the probability function, or sometimes,
probability mass function, and alternatively dencted by P‘.

A discrete distribution is called a lattice distribution if the
range of the random varisble is not merely countable but in addition
the intervals between those of its values for which there are non-zero
probabilities are all integral multiples of one quantity, a quantity
depending on the random variable. Points having the values of the random
variable as coordinates then form a lattice. By an appropriate linear
transformation it can be arranged that the random variazble takes values
which are integers. Most discrete distributions considered in this thesis
are lattice distributions with the random variables taking non-negative
integral values. They will be referred tc simply as lattice distributions.

A discrete (lattice) distribution will be said te be finite, or
terminating, if f(x) is non-zero for only a finite subset of the non-
negative integers; otherwise it is said to be infinite, or non~-terminating.

Unless otherwise indicated, capital letters (e.g. X, Y) denote
random variables, while the corresponding small letters (x, y, etc.)
represent the values taken by the randem variables, Greek letters will
usually be used to represent parameters, and in particular a parameter
taking values between zero and one (inclusive if indicated accordingly)
will be denoted by & subscripted or unsubscripted. A specific
distribution will sometimes be denoted in the common notation whereby,
for example, Geometric (x; 6) implies that X is distributed as the
geometric with the parameter 6 and Neg binom (x; &, 8) denotes that the
distribution of X is negative binomial with parameters « and 8 where it
would be clear from the context which of the two is the exponent

parameter.



1.2.3 Moments
The rth power moment or simply the rth moment is the expected

value of x' and for a discrete distribution it is defined by
Efx'] = Ex #x) ® ¥¥y  r# L, 250 {1.2:3.0)

The mean, E[X], will usually be written as u rather than as .
The rth central moment, the expected value of (x - u)', of a

discrete distribution, is defined by
E[(x - w)') = Z(x=~wEx) = u, r=2,3,.. £149:8:2)

The variance, E{(X - u)z], will usually be referred to as var(X),
The rth descending factorial moment, often usually referred to

simply as the rth factorial moment, is defined by

E(x 1 = Ixmf(x)

(r)
x=r

P =1y 25000 (1.2.3.3)

]
=

n
[

where Xeiy = wh = 1Y wni =0+ 1) 0= Ly Risaiy X

The ascending Ffactorial moment is defined by

EX'1 o= TaxMeo = W, p=1, 2. o Ruid

x=0
where x'"' = x(x +1) ... (x + » - L) @ 2 1 2hiev % 5 3.
The summations given in these definitions are not necessarily
convergent for every discrete distribution and hence their corresponding
moments may, sometimes, not exist. Using the relations between the

different types of moments (see e.g. Kendall and Stuart (1963),

Chapter 4) it can be shown that the existence of one of u:, oo Mgy

£nY o : g 3
u implies the existence of the others, and the existence of all

moments of order less than r.

The rth inverse mcoment is defined by

ar

El/x'] = ] S fx = w ., r=1,2,. (1.2.3.5)
x=0 X

A discrete distribution can possess inverse moments only if f(0) = 0.



It is possible to define other moments (e.g. incomplete moments

and absolute moments) for discrete distributions,

1.2.4 Generatiqg functions

The probability generating function (pgf) of a non-negative,

integer-valued random variable X is defined by

6z) = E=z) = JPRz, |z]<1 (1.2.4.23

x=0
The pgf always exists for every proper distribution of X and gives a
complete characterization of the distribution. It provides a useful
tool for the study of discrete distributions. The probabilities B

can be obtained from the pgf G(z) using the relation

)
g %x = 0, Losvi (l.2.4.2)
z=0Q

x
p = A

x X

Glz)
»

dz

Suppose G, (z) is the pgf of a given lattice distribution D, . The
distribution D, with the pgf G, (z) = szl(z), k integral, is said to
be the shifted form of D . The distribution D, is said to have been
shifted k units to the right or to the left according as to whether
k is positive or negative. A reversed distribution has a pgf of the
form zns(%) where G(z) is the pgf of a distribution on the integers
Oy Lyeven D

Other generating functions can be defined for discrete distributions,
in terms of the pgf. The moment generating function (mgf) can be defined
as

Ge*y = ] P (1.2.4.3)

where the rth moment, if it exists, can be obtained as

r
gt = ’.E—G(e‘)

r r
dz

In each expression, G(z) is the pgf.




The cumulant generating function (cgf) is defined as the logarithm

of the moment generating function and hence is given by

—_—

TP et (1.2:4.5)
x

x=0

log Gle') = log

The rth cumulant, k , if it exists, is defined as

r
k = Q“T log G(e ) s P BN B 41%M:8)
dz
- z2=0

The cumulants are sometimes called the semi~invariants because the
cumulants kr, r @& 2, of a random variable X are the csame as those for
X + A for any constant A. In particular, the cumulants, k , r » 2, 0of a
lattice distribution are the same as those of its shifted forms.

The (descending) factorial moment generating function (fmgf) can

be defined as

&1+2) = J(1+2)P (1.2.1,7)
Xx=p0 =
where Mo, can be obtained, if it exists, from
q' |
Ve ® (== G(l + z) sy =1, 24... (1.2,4,8)
dz 220
Note also that
df
] = = G2 s r = s 25 i (1.2.4,9)
{r) r
dz .y

which implies that the pgf G(z) can also be regarded as a factorial moment
generating function.

The ascending factorial moment generating function (afmgf) can be
defined as

4} 4
G[(l -2)7) = lep/-2) (1.2.4.10)

x=0

a {r) 7 . S 5 4
wheve u can be obtained, if it exists, from




r
p{r, = ""i"'—';"' G[(l - Z)'l) 9 I‘ = lg 2,10. (1-2.“-11)

il z=0

The (descending)factorial cumulant generating function can be
defined as

o
log &(1 + 2z) = log E P (1 + z)" {1.2.4.,12)

x=0

and the factorial cumulant ktrl if it exists is given by

r
k SO - log (1 + z)

’ r‘ : l, 2".' (l!z-ulla)
{r) _dz’

z=0

The ascending factorial cumulant generating function (afcgf)

can be defined as

x=0

log{%[(l - z)-l]1 - log[-z £ Ak z)" (1.2.4.14)

and hence the rth ascending factorial cumulant, if it exists, is defined

as

« P2 X5 Zaies (3a2:4:15)

2z 0

Koz EL? £n[§[(l - z)-i]]
dz

From the relationship between the cumulants and moments (see e.g.
Kendall and Stuart (1989I, Chapter 4), Douglas (1971)), it can be shown

that kr, K , and ') exist if and only if u: exists.

(r)

P Some Mathematical Functions

1.3.1 Intreduction

Some mathematical functions which have some key roles to play in the
thesis are stated below, together with their associated notation. These
are the gamma, beta, and factorial functions, the generalized hypergeometric

function, and the modified Bessel functions,



- 10 -

1.3.2 The gamma and factorial functionms

The gamma function is defined by Euler's integral as

r{x) = fwe-tt’midt, Re(x) > 0 (1.3.2:1)

o

while the factorial function is defined by

L

x! = x(x-1) ,..1, x=1, 2,...3 0} =1, (1.3.2.2)
The recurrence relation
r{x + 1) = xI{x), x ¥ 0y ~1, =260 {(1:3.2:3)
provides a link between the gamma and the factorial functions and can
be used tc extend the range of the latter, since
xi ‘2 Tx + 1),
Ratios of gamma and factorial functions can be given meaning over

the negative integers by defining (Kemp and Kemp (19562))

%} Co (=1 (% -y = 1) _ (-1)’?(-3-1)

(x +y)! ~ (- - 1! - T{-%) (1.3,2.4)

where x < 0, y < 0, and y is an integer.

Other related functions are the descending factorial, the
ascending facterial, and the binomial coefficients. The descending
factorial is defined by

Ky ® ®*(x-1) o.. (x-r+1) = DP{x+1l)/T{x-r+1) (1.3.2.5)

with L =0 for r> x if x is a positive integer. The ascending

factorial is defined by

x‘f* = x(x+1) ... {x+r_l) = r‘(x-}r-)’(r(x) t1:8:2.6)

r)

with x''7 = © for » > |x] if x is an integer. The binomial ccefficients

are given by

x| _ x! _ T{x+1) p "
LJ 1y s R o RS ool 0 Liadiin X (1:3.2.7)

xi . s Xx+r=1t _ (r)
Note that [r] xtr)/r. and [ rel ] % Ix



= 1Y &

r+x-1

. =&} _
Note also that { PJ = (-1) [ -

J = (-1 Mx+0)/T(x) T(r + 1),

1.3.3 The beta function

The beta function is defined by

1
B{x, vy} = I & - t)"'ldt, x>0,y >0, £3.3.9.1)

0
or, in terms of gamma functicns, as
B{x, y) = T(x) T(y)/T(x + y). (1.3.3,2)
By putting t = u/{u + 1), the function can also be represented by

ux-l-l
B(x, y) = jm — du, x>0,y > 0. £12.3.3.3)

Xty
s (u+ 1)

1.3.4 The generalized hypergeometric function

The generalized hypergeometric function is defined by the series

( )n Ei

o a
pFa(x) = _F [(a); (B); x] = ..E,,m,,‘n (1.3.4.1)

where the symbol (a) denotes the sequence of parameters a ,..., a and

(b) that of bx""’ bq while

(a), = l'Elllr(x +a,)/r(a,)]
and
q
{b)x = I (r{x + bi)/r(bj)],

G

with the conditions that a, # 0 and b’ > 0.
The convergence of pF;€x) is dependent on the fellowing conditions:

(a) If p < q, the series converges for all finite values of its
argument, real or complex.

(b) Ifp =gq + 1, the series converges

(i) for |x] < 1 for all values of its parameters

"

(ii) for x = 1 provided Re(Zb, - Eai) > 0, and

(iii) for x = -1 provided Re(Eb] - Za ) > -1,
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(¢) Ifp>q + 1, the series only converges in the trivial case when
x = 0 and is only a formal representation of the generalized
hypergeometric function concerned. However, if one or more of the
numerator parameters is a negative integer, then the series is a
terminating series and the question of convergence does not arise.
Left-hand truncation (head truncation) of the first k terms

yields

(a;) ...(ay)  «
. s F, (3 (a+x); 1+ X, (b+X); z) (1.3.4.2)

(bl)k...(bqf; k! pe1 g+l

The following integrals pertaining to generalized hypergeometric
distributions are used extensively in the study of mixtures of

distributions:

p+1Fq+1(c! (al}; d, {b] 1% Z]

i

r{d)
T{c) Tlc =4}

1
c =1 =g =1
J t (1~ %) oFa ((al); (b, )3 zt}dt, (1.3.4.3)

0
N (e, (a ); (b )3 z)

s ﬂ% J e-’ychlpfq ((a.i 33 (l:oj )3 zy]dy, (1.3.4.4)

and

; o B
qu[(a‘.?, (b'): S}

= F{S?T J ok e s e (b )5 zx)dx (1.3.4.5)

P a
0

(see Erdelyi (1954, pp.297-298, 337, 365)).

1.3.5 The modified Bessel functions

A sclution of the differential equation, € s

2
2 23X 5 g gi-+ {z® » uz)y = 0 £1.3.5.1)
dz* %

is given by
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o i a+2m
J(2) = ] [(-1) [-g] /I:m.’ Mo +m + 1)], z#0  (1.3.5.2)

m=0
The differential equation ¢ is called the Bessel equation and Ju(z) is
commonly referred tc as the Bessel function of order a, although cther
solutions of N exist (e.g. the Hankel function Ya(z), sometimes regarded
as the Solution II, and the Nielson functions HLI’(Z) and Hizl(z) jointly
regarded as the Sclution III).

Another differential equation, ¢

, S&Y, similar to €, is

2

a E—f + 2 %% - (2° 4 az)y = 0 (1.3.5.3)
dz

One of its solutions is

oo g+2m
Iu(Z} = Z {-g—] /[m! Ma +m + l)} {1.3.5.8)

]

and is related to Ju(zl by

Im(z) 2 e J (iz) (1.3.5.5)

but In(Z) is a real function of z. It is called the modified Bessel
function of the first kind of order o and argument z.

Another solution of g, is given by I_a(z). Note however that
I_,(z) = I (2) for integral n. In order to obtain & fundamental system
of solutions for €, the functicn Ka(z) has been defined for all o, as

Kn(z} = [n/(28inam)}fI (z) - I“(z)}. (1.8.5.6)

This is called the Macdonald functicn, or mere commonly, the modified
Bessel function of the second kind, of order o and argument z. Because

. wami (1)

K,(z) = g3nie H#oo(z), (2+3.5.,7)

some authors call Ku(z) the modified Bessel function of the third kind,
in the sense that it is a modification of the Nielson function Hilj(z)

which is one of the twec forms of the Sclution III to the Bessel equation.



- 14 -

1.4 Familiegs of Discrete Distributions

1.4.1 Introduction

By a family or class we mean simply & collection of distributiomns
each of which can be put in a given mathematical structure. The given
mathematical structure delineates the family. However it is possible,
and is indeed usual, for a particular distribution te belong to many
families.

Increasing attention is being given to derivation of broad classes
or families, each including as wide a variety of distributions as
possible within as specific a formulation as possible. This removes
the need for piecemeal derivations and represents considerable economy
of effort. It is also resulting in the discovery of interesting
relationships between distributicns previously thought to be widely
dissimilar,

The major classes of discrete distributions on x = O, 1,... are
briefly described below. In general, applications are left for the next

section.

1.4.2 Power Series and Generalized Power Series Distributions

A large number of mathematical functions can be expanded in series
having positive terms. By multiplying these terms by a suitable constant
and provided that the series is convergent, one can make the terms sum to
unity and thus produce a discrete distribution. For example, the Poisson
distribution is obtained from the series expansion of ezz, normalized by
e—A. This approach provides, in particular, the wide class of discrete
distributions called the power-series distributions (PSDs). They are

represented by the probability function
f(x) = axBfo(E»), x =0, 1,... (1.4.2.1)

where a E a(x) 2= 0, A(B) = ZaxBx or, if there are other parameters a,
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a = a(x, a) and A = A(B, a¢). Their pgf is given by
G(z) = A(Bz)/A(8). (1.4.2,2)

The first discussion of the PSD class of discrete distributions seems
to be that given by Noack (1950), although Tweedie (1947) gives it a
menticn. Noack obtains recurrence relations for the moments and the
cumulants and alsc points out that the Poisson, negative binomial,
logarithmic, and Polya distributions are PSDs. Khatri (1959) presents
recurrence relations for the cumulants and the factorial cumulants and
uses these to show that a single-parameter PSD is uniquely determined
by its first two moments,

The concept of a PSD has been extended by Patil {1%62) to a class
allowing the support of the random variable to be any countable subset
of the setr of real numbers. Distributions in this broader class are
called the generalized power-series distributions (GPSDs). The GPSD
class is the discrete analogue of the single-parameter exponential
family of continuous distributions. Properties of GPSDs are set out

in Patil (1962). See also Ord (1972, pp.l16-121).

1.4.3 Difference-equation distributions

The difference-equation distributions (DEDs) are discrete

distributions whose successive procbabilities satisfy relations of the

form

P’;:’ = ) (1.4.3.1)
or, equivalently,

L (x)

P, = S (1.4,3.2)

- (%) ~ hix)
i.e: AP" = L—g—(_:a_—Pu

where u(x), v(x), g(x), and h(x) are polynomials and AP (2 F - P _ )
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denotes the difference operation. Note that, in general, the support

is mot restricted to the set of non-negative integers (e.g. Ord (1968)};

however, only the subclass taking walues on % = 0, 1l,... is of interest
in the present study,

DEDs have been known iIn the literature for a very long time.
For example, Pearson (18395) notes that the hypergeometric distribution is
a DED and uses this as a starting point for obtalining, by a limiting
process, the differential equation defining the Pearson system of
continuous distributions. Guldberg (1931) points out that recurrence
relations can be established between moments of any discrete distributicns
belonging to the system defined by

P Al + o ) ... (X4 0 )
x+1 1 m

P = (x+Bl) ...(x-an)

(1.4.3.3)

The generalized hypergeometric probability distributions (ghpd's)
discussed in the next section (section 1.4.4) are all DEDs since they

are represented by

x+1 by (x+al) - (x+a°)
P x+1(x+ b ). (x+ b.) (1.4.3.4)
2 ulx)/v(x)
with u(x} = Alx + 3 ) ... (x +a) and vix) = (x+ D(x +b ) ... (x +b)

which are polynemizls.

1l.4.4 Generalized hypergeometric distributions

The generalized hypergeometric series defined in Section 1.3.4 has
positive coefficients. By normalizing these and ocutlining the convergence
conditions, Kemp (1968a) has defined a wide class of lattice distributions
which are known as generalized hypergeometric probability distributions

{ghpd's). They have pgfs of the form




< 1T &

g(z} = pE'q(u.l,..., a Byseees Bq; lz)/pf;(al,..., a3 Byseens Bq; Ad,
= BE;((a£); {Bl); 12)/9F;((“1}; (Bl); A) a * 0, Bl >0
= CF ((a); (B ); az) (1.4.4.1)
P a i i

where the factor C here, and in the pgf of any ghpd's to be mentioned
subsequently, denotes the appropriate normalising constant. It is
obvious from the form of their pgfs that they are power series
distributions, and also since the ratio of their successive probabilities
is given by

(x + “1} o K W c:p.)
l.G+BlT’.. (x+qu,

P:u-:. _ A
P T X+

X =05 lyvass (1.4.4.2)
they are difference-equation distributions. Most discrete distributions

can be represented in this form or in forms related to it, especially

by truncation, shifting, reversing, or generalizing.

Kemp (1968a) also presents the differential equations from which
recurrence relations for probabilities, moments, factorial moments,
cumulants, and factorial cumulants can be obtained, and in addition
considers urn models and limiting distributions. A further description
of ghpd's has been given by Dacey (1%72) who proposes a methﬁd for
identifying the constituent members of the class and alsc lists the

parameter ranges of the different subsystems with pgfs

z) = Cpf;(kz}, p+taqg = 3, p;Q=0; 1, 2, 3.(1.4,4.3)

Guldberg's {1231) system of discrete distributions is represented
by

P {x +a) vo (x*a)
X+l _ 1 m

P © {x+b ) ... (x+Db)
1 n

(x + L)(x + “h) e N & ap)

1 (x + 8 ) ... (x+8) L (1l.4.4.4)

X
X +

Hence its subsystem supported on x = 0, 1,... with a, ¥ 0, % > 0 is

comprised of ghpd's having pgfs of the form
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G(z) = Cqu(l, @ seens O3 By srens B> rz). (1.4.4,5)

Ord {1967a) discusses a system defined by a difference equation

which can be equivalently written as

P, i (x +a )x+a)
Px (X+b1)(x+b2)
i 1 {(x + D(x + az)(x + us) (1 as )
o=+ 1) {x + B (x +8) T
Its lattice subsystem with o, Oy # 0 hac the pgf
G{z) = Cst(l, a , 0.3 B, B3 z) | (1.4.4.7)

if B1 + Sz o, % B3 + 1. Ord presents a graphical method for

distinguishing between the distributions in the system.
Katz (1948} refers to his work on the discrete distributions defined
by

Fer1 _ AR + a)
P To(x + b }{x +b,) *

x =0, 1,.

A (x + L)(x + a,)

T D = B )(x + 8,7 (1.4.4.8)
The cases with a # 0 have pgfs given by
Glz) = CzFé(l, @ 3 815 32; Az). (1.4.5.9)

In a study of birth-and-death processes, Hall (1956) obtains a
system of lattice distributrions defined by the pgf

6(z) = CF (a, a3 B; 82), e} =1 (1.4.4.10)

5 3
Tﬁe distributions in the system can be called the general Gaussian
hypergeometric distributions. Tripathi and Gurland (1877} obtain minimum
chi-square estimators for the parameters of the special cases having pgfs
of the form

6(z) = C,F (1, a3 B; 82), lef < 1. (l,4.4,11)

Kemp and Kemp (195%6a) have listed out the constituent members of the

system having pgfs of the form
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glz) = czF1(°1’ a3 By z). {1.4.4,12)

These are called the Gaussian hypergeometric probability distributions
(Ghpd's), a name cbvious from the form of the pgfs.

A subsystem of the ghpd's comprising distributions which can be
called the general confluent hypergeometric probability distributions
is included among Hall's (1956) ghpd's arising from birth-and-death
processes. The distributions in this subsystem have pgfs of the form

G(z) = lel(a; B3 Az). (l.4.4.13)

Bhattacharya (1966) discusses this subsystem and derives a mixture on
the parameter A with a continuous distribution called 'the general
exponential' as the mixing distribution. Gurland and Tripathi (1975)
present some minimum-chi-square estimators for parameters of the general
confluent hypergeometric probability distributions. Bradwell and Crow
(1964) have given the name 'hyper-Poisson distributiocns' to the special
cases with the pgfs

Glz) = clrl(l; By Az). (1.4.4.14)

Those with A < 1 are said to be 'sub~Poisson' and those with A > 1
'super~Poisson'; the case A = 1 being equivalent to the Poisson
distributrion. This division corresponds to whether or not the variance
exceeds the mean (Ord (1972, p.92)). Staff (13964) also independently
discusses the hyper-Poisson distributions.

The system of lattice distributions represented by

Pxol - h

Px - (x + lj ('x + a)‘ X = 0’_ l-.l-- (lu“g“.ls)

has engaged the attention of Katz (1946, 1948, 1965). The cases with
a # 0 have pgfs of the form

6(z) = CF (a; -3 82), (8] < 1. (1.4.4,16)

They can be called the general binomial distributions in a wider sense

than Khatri and Patel's (1961). They comprise the (positive) binomial,
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the negative binomial, and Johnson and Kotz's (1889, p.4l) set of
terminating distributions akin to the (peositive) binomial. Xatz (1986%5)
suggests using a plot of P“I/Px against x to distinguish between the
constituent members of his system.

Another class of generalized hypergeometric distributions has
been defined by Kemp and Kemp (1974) who also give differential
equations for obtaining recurrence formulae for probabilities,
cumulants, and moments of the distributions in the class. The
distributions have pgfs of the form

Glz) = F ((o )3 (B ); Az -~ 1)) - ' (1.4.4.17)
P9 i i

and have been called the generalized hypergeometric factorial-moment
distributions (ghfd's) because their factorial mements are given by the
terms of the generalized hypergeometric function i.e.

br‘q((uiJ; (85); At = G(1 + t}, (21.4%.4.18)

G(1l + t) being the facterial-moment generating functicn. Some examples
are given in an earlier paper of the same authors (Kemp and Kemp (1969)).
Medels giving rise to some ghfd's have been discussed by Kemp and Kemp
(1975).

A broad class subsuming the ghpd's and the ghfd's is that of the
generalized hypergeometric recast distributions (ghrd's) (Kemp (1874})
having the pgf

g(z) = pP;((aiJ; (Bj); Az + y)/pf;((aiJ; (Bj); Xt oy) (1.4.4.19)
Examples of ghrd's with v # 0 are Kemp's (196E8b) limited risk compound-
Poisson-process distribution and Gurland and Tripathi's (1975) ECB

distribution.

1.4.5 Compound or mixed distributions

The definitien of a compound distribution is embedied In the following
thecrem which has been stated in many versions in the literature

(e.g. Feller (1643}, Teicher (1950), Blischke (19€5)).
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Theoren 1
Consider an arbitrary cdf G(x; a, B) depending on a parameter a

(€ A) and possibly, on other parameter(s) B. Suppose there is another

distribution H{aj; y) supported on Ao C A and depending on the parameter(s)

Y. Then the function

F(x) = F(xy B, )
= J G(x; a, B) di(a; y) {1.4.5.1)
A

o
is again a cdf; provided that the integral is convergent. This integral.
is defined in the Stieltjes sense.

The distribution F(x) in the theorem is called a compound distribution,
or more commonly, a mixture. Only the cases in which F(x) is a discrete
distribution are of interest in this study. These arise when G(x; o, B)
is a discrete distribution but with discrete or continous H(a; y). They
can be considered to be of three forms according as to whether H(a; y) is
a continuous distribution, a finite (or terminating) discrete distribution,
or a (truncated or untruncated) non-terminating discrete distribution, :
The latter two types of F(x) are called finite mixtures and countable
mixtures respectively. In either type, F(x) is given by

F(x) = Ip6G(x3sa) = IpG (x) (1.4.5.2)
where the C (x) relate to the mixed distribution while the p , the H(a)
probabilities, can be regarded as the proportions of the mixing.

Referring to the designations of the cdfs in the theorem, the
distribution F(x) is called an H-mixture of G or a compound-G distribution
while H(y; y) is the compounder or the mixing distribution. Gurland
(1957) has proposed a notation which 1s now well-established in the
literature. In this notation and with Xes Xoo Y, referring respectively

to the rvs of the distributions F(x; 8, y), G(x; a, 8), H(y; y), the




above relationship is represented as

N = XB(“) g L 9 (1.4.5.3)

where X is the mixed, Y 1is +he mixer or compounder and @ is the
parameter of the distribution of X, on which the mixing is performed.

One of the principal concepts upon which many applications of
mixture is based is that of conditionality, In many problems the
distribution of a random variable X is known conditionally, given the
value of Y a related random variable, whereas the unconditional
distribution of X is of interest. This unconditional distribution is
simply a weighted average, i.e. a mixture, of the known conditional
distribution.

Among discrete mixtures those of the Poisson distribution are the
commonest, although mixtures of other classical discrete distributions
have also been developed. It should be noted, however, that the issue
of identifiability often severely pestricts the number of distinct ones
out of the conceptually possible mixtures of a given distribution.

The question of jdentifiability of mixtures concerms their unique
characterization. Before estimation or hypothesis testing for a mixture
can be meaningfully discussed, it must be known whether the mixture is
uniquely determined; that i{s whether the parameters are 'jdentified’.
Failing this, estimation may be impossible.

Identifiability for mixtures of +he Poisson distribution has been
shown by Feller (1843). It is also well known (e.g. Blischke (1964 ))
that mixing the binomial or the negative binomial distribution on the
exponent parameter results in a class of mixtures which is identifiable.
Note that in either case, if the mixing distribution is the Poisson, a
generalized Poisson distribution results (Section 1.4.6 below). If,
however, the binomial or the negative binomial is being mixed on the
non-exponent parameter, only & restricted set of mixing distributions
produce identifiable mixtures (Teicher (1860, 1961), Boes (1%63), and

Blischke (1964, 1965)),

e . o S S SR8 1S
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Compound Poisson distributions are discussed further in Chapter
Two, particularly in Sections 2.3 and 2.4. Besides compound Poisson
distributions other discrete mixtures mentioned in the lLiterature
include compound hypergeometric distribution (Hald (1960)), the beta-
binomial distribution which is Kemp and Kemp's Gaussian hypergeometric
Type IIIA (Kemp and Kemp (1956a)) having the pgf

G(z) = Czrx(_n’ a; -n - B + 1; z) (1.4.5.4)

and represented, in Gurland's notation, by

Binomial(x; n, 0) g Beta-I(6; a, B), (1.4.5.5)
and the beta-Pascal distribution which is Kemp and Kemp's Type IV,
otherwise known as the generalized Waring distribution (Kemp and Kemp
(1956a), Irwin (1968}) with the pgf

Glz) = CaFl(a, By o + B + vy z) (1.4.5.6)

[(L-8)/(1 - 82)]°%

and is the mixing on § of the negative binomial h (z)

by the Beta-1(€; a, B) or the negative binomial hz(z) (1+3% =)™ by
the Beta-II(X; a, B). Another example of compound distributions is
Subrahmaniam's (1966) distribution which is the mixing on & aof the
Neyman Type A having the pgf h(z) = exp[kB(eY{zﬂl) - 1)] by the
Beta-I(8; a, B) i.e.
NTA(x; A8, ¥) g Beta-I(€; a, B). G Oy

It is important to note that when considering the mixing of a
distribution, it is crucial to know which particular parameterization
one is dealing with, because mixtures of different parameterizations of
a given distribution (even a one-parameter distribution such as the
geometric) are, in general, not identical. It seems that the introduction
of an arbitrary Ecaling of the mixed parameter into the definition of a
mixture (e.g. Feller (1343)) does not remove the need to clearly state
the parameterization. Johnson and Kotz (1969) in their discussion of

mixtures of discrete distributions give the following type of representations

for compound hypergeometric distributions
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Hypergeom(x; r, m, n) A Binom(r; m, 8) = Binom(x; n, &) (1.4.5.9)
r

Hypergeom(x; r, k, £) A Hypergeom(r; k, m, n) = Hypergeom(x; %, m, n)
r
{1.4.5.10)

but in the case of mixtures of the Poisson, the binomial, and the negative

binomial they use the following types of representation:

Poisson(x; am) A D(m; 8) = Poisson-D(x; a, B8) (1.4.5.11)
m
Binom(x; mn, 8) A D(m; &) = Binem-D(x3; n, a, 8) (1.4.5.12)
m
and
Neg Binom(x; ma, B) g D(m; X) = Neg Binom-D(x; a, B, A). (1.4.5.13)

It is also noted that some mixtures have been obtained by mixing unusual
parameterizations of common distributions. For example, the well known

Yule distribution, as originally obtained, is

Geometric{x; e—“S] A Exponential(a; ) = Yule(x; BA) (1.%.5.14)
o

(see e.g. Johnson and Kotz (1969, pp.2u5-2u6)).

1.4.6 Generalized distributions

A substantial part of probability theory is ccnnected with sums of
independent random variables S, =X + ... + X, and the special case
where the X 's have a common distribution is of particular interest. In
many situations the number, n, of terms in such sums is itself a random
variab;g. This latter type of sum gives rise to the wide class of
discreté distributions commonly called the generalized distributions
(e.g. Feller (1943), Gurland (1857), Katti (1966)), otherwise known as
the (true) contagious distributions (e.g. Sprott (1965), Ord (1972, p.66)),
or randomly stopped sums (Douglas (1970, 1980)), or simply random sums
(Chatfield and Theobald (1973)).

Formally, let X,, X,,... be a sequence of mutually independent lattice

variables with a common distribution having the pgf u(z). We are interested
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in the sums

SN = X1 + Xz + ..+ XN (1.4.68.1})

where the number N of terms is & random variable independent of the Xi'é

and having the distributicon with the pgf
k
viz} = Ip, s - (1.4.6.2)}

Note that the distribution of the conditional variable SNIN = n is an
n-fold convolution of X the common distribution of the X, and hence has
the pgf h{z) = [u{z)]". Therefore the pgf of the unconditional random

varigble § is given by

alz) an[u(z)]n

v{u(z)}. (1.4.5.3)

A coemvenient notation has been proposed by Gurland (1857} to
represent the relation between the generalized distribution and its
componehts. Let the random variables X , X have the pgfs gl(z),

g,(z) vespectively, and let the random variable with the pgf gl{gzﬁz))

be demoted by X, V X . Then X V X is called a generalized—‘x1 variable
with respect to the generalizer X,. Note that the generalizing operation
"V'" iz not commutative, in general. In this notation the above defining
expression can therefore be represented as

S = NV X (1.4.6.4)

In the generalizing operation, all the parameterg of the generalizer
and of the distribution heing generalized are preserved. Therefore the
number of the parameters of a genepralized distribution is the sum of those
of its components. This implies that a generalizea distribution is, in
general, a multi-parameter distribution. This feature is often a
disadvantage when application is concerned since the fewer the parameters
to be estimated in a distribution the better it is for most practical
purposes. This difficulty of multiplicity of parameters is often tackled

by having for either of the two component distributions a special case of
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a given distribution., TFor example, in the application of the Poisson-
binomial (i.e. Poisson(i) V Binomial(n, €)})} it is usual to specify the
value of n in advance.

Katti (1966) has given some relations between the factorial moments
and the facteorial cumulants of gereralized distributions and those of
their components. Khatri and Patel (1961) present recurrence relations
for the probabilities of the generalized Poisson, the generalized
binomial, the generalized negative binomial, and the generalized
logarithmic series distributions respectively. They also give some
relations between the factorial cumulants of these generalized
digtributions and those of their respective components.

Among generalized distributions, the generalized Poisson
dietributions (GFDs) are the commonest. They are the subject of this
thesis and their main properties are discussed in the next chapter.
Other éeneralized distributiong specifically discussed in the literature
include Khatri and Patel's (1961) General binomisl V General Binomial
where by a general binomial distribution they mean a distribution which
is either a binomial distribution or a negative binomial distributiocn.
Their distribution therefore comprises
Binomial V Binomial
Binomial V Negative binomial
Negative binomial V Binomial, and
Negative bLinomial V Negative binomial
each of which is, in general, a four-parameter distributicn. Hence only
special cases would normally find applications. Johnson and Kotz (1969)
give brief descriptions of Binomial V Poisson, Negative binomial V Poisson,
Binomial V log series, Negative binomizl V log series, and Log Series V
log series. Katti and Rao's (1870) log-zero-Peisson distribution is
Log Series-with-added-zeroces V Folsson, while Subrahmaniam's (1966)

distribution is obtained by generalizing a generalized hypergeometric
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factorial-moment distribution with the pgf 1Fx(u; a + By Mz =1)) by a

Poisson distribution.

1.4.7 The Lagrangian probability distributions

By exploiting certain features of the well-known Lagrange's formula
for series expansion, Consul and Shenton (1372) have defined two related
classes of discrete distributioms, the basic Lagrangian probability
distributions (BLPDs) and the general Lagrangian probability distributions
(GLPDs). Members of the fipst take values on X = 1, Z2,... while those of
the other are supported on X = 0, 1,... These new systems of distributions
have produced a flourishing body of literature, as evidenced in Johnson and
Kotz (1982).

Let u(s) be any pgf defined on some or all non-negative integers
such that u(s) # 0. Then the transformation

z = s/u(s) (o O T B
defines, for the numerically smallest nonzero root s, a new pgf s = gl(z)

whose expansion in powers of z is given by the Lagrange's formula as

o« x x ~1
e = g = ) E S UusNTH o (1.4.7.2)
x=1  ds e

Its probability functicn is given by

x =1

. 14 x B .
P = ?E.dsx-l {[u(s)] }|s=C’ % & 1y Byawn (148.7,8)

This distribution is called the basic Lagrangian probability distribution
with respect to the distribution with the pgf u(s) and can be denoted by
Lo[u(s}} e.g. LO(Poisson(A)) = Borel()). Precedence on this type of
distribution actually goes to Dwass (1967) and Steutel {1870, p.13).
Suppose u(s) and v(s) are two given pgf's defined on some or all
non-negative integers and such that u(s) # 0. Then the transformation

z = s/uls) (1.4.7.4)
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defines, for the smallest non-zero root s, a new pgf v(s) = h(z) whose

Lagrangian expansion in powers of z is given by

& x el ;
h(z) = wv(0) + = x_lihﬂsn vi(s)} 550" (1.4.7.4)
x=1 ds
Its probability function is given by
P = w(0Q)
0
o= -L‘f-l (hﬂstVWSJH x =1, 2 (1.4.7.5)
x % 4~ s=0° ¥ e e

The distribution is called the general Lagrangian probability distribution
with respect to the ordered pair of pgfs (u(s), v(s)] and is denoted by
L(u(s), v(s)] e.g. L(Binomial(m, 8), Binomial(n, 6]] which is Jain and
Consul's (1971) distribution with the probability function

P = [E‘fLEE}[n t{m“]a”(l 1 ks AP T

(1.4.7.7)

and L(Poisson(e), Poisson(A)} which is Consul and Jain's (1971) distribution
having the probability function

Pz A 4 gl TR e % 5 04 Lyees (1.4.7.8)

The latter can be regarded as a general Borel-Tanner distribution,

The distribution resulting from L{Neg binomial(a, P), Neg binomial(g8, P)]

has the pf
- B T((a + 1)x + 8 + 1) _I: - o+ B3)
e © B+t la+ 1)x x!Tlex+8 +1) [Q]Q (1.4.7.9)

The structure and properties of the Lagrangian distributions are
detailed in Consul and Shenten (1972), Jain (1974), and Consul (1975).
Information on these distributions is, however, far from being complete.
The defining conditions state that any pgf u(s) would yield a BLPD and
any ordered pair [u(s), v(s)) a GLPD. However Nelson (1975) has pointed
out that there are cases when restrictions are required on the ranges of
the parameters of the component distributions to obtain a Lagrangian

distribution which is a proper distribution. Consul and Shenton (1975)
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themselves note that L{Poisson(u), Poisson(B)] is a proper distribution
only if 0 < o < 1. Furthermore, it may be cbserved that the successive
probabilities of Jain and Consul's L[Binomial(m, 68), Binom(n, 9)]
mentioned above is represented by |

(x + 1M +m{x +a. ) ... (x+0 )
1 m

x+1 A -3
= ki X7 BT o (R E) (1.4.7.10)

where X = (ma)f[

m
m=- 1

This implies that, in generalized hypergeometric form, the pgf is represented

by

G{z) = C F___{Y: W, G oseney & 81,..., g

m+l m=1 m= m=1
which is convergent only in restricted cases {see Section 1.3.4). It

definitely cannot be non~terminating.

1.4,8 Binomial generalization distributions

A number of new distributions have been defined based on structures
which are, or are related to, generalizations of the binomial expansion.
These distributions can therefore be called binomial generalization
distributions,

From certain urn models Consul (1974) has developed some
distributions which are related to Abel's generalizations (e.g. Riordan
(1979)) of the binomial expansion. These are called Abel distributions
(Johnson and Kotz (1982)). They include the quasibinomial distribution-I
with the pf

a

" (o0 +8 + o))"

the guasibinomial distribution-II with pf

n = af
i (e + B)

{2}(3 e M+ an - 0] e + B AT,

%% Oy Yisiea Ns (1:4:8:2)

m=1
: }{l - BS] »a = (n + i)/m, and B’ = (n + 3)/(m = 1).

P = [2}(a+hx)’"’[a M- 2] %20, 1oeeis B,
(1.4.8.1)

3 AzZ) (1.u.7.11):
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the quasihypergeometric distribution with the probability function

P = (aB)(a + B8 + An) o + Ax} B + AMn - %) a + B + in

x  (a+ B)a + xx)[B + A(n - x)] x n - x n .
%8 Jonwins By (1.4.8.3)

and the quasi-Polya distribution with the pf

P, = Izju{a Falx - DM A - 0" (e 18+ An)["].

X =0, 1,000y n (1.4.8.4)
where the parameters a, B8, A can be any positive number although proper
distributions are also cbtained with some other sets of values of these
parameters.

Another system of binomial generalization distributicons has been

proposed by Dwass (197%9) who observes that

(1.4.8.5)

(x + '™ = n]xlllyln~tl

o<1<n[1
where u'"? =z u(u - 1) ... (¢ - alr - 1)), o being any arbitrary real
number satisfying a(n - 1) € u. This expression provides a distribution

defined by the probability function

= [z]a"'b‘““”’ Ma+ D)™, x=0, ..y (1.4.8.8)

provided that a > 0, b > 0 and "2 (e - 1) v.. (e - alr - 1)) where
a is an arbitrary real number satisfying a{n - 1) € (a + b). Dwass (1979)
provides a computer program for computing the probabilities and also

suggests an application in acceptance sampling.

1.5 Chance Mechanisms Generating Discrete Distributions

1.5.1 Introduction

A discussion of the stochastic method or methods generating a
distribution provides information about the nature and scope of its
applicaticns.

It is usual, and indeed more common than often realised, for a

given distribution to arise from more than one underlying chance
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mechanism. The case of the ubiquitous negative binomial is a point in
view (see e.g. Boswell and Patil (1870)). The long-drawn controversy
over the term "contaglon" stems from the exploration of certain distri-
butions by different people using different stochastic meodels.

It is often rightly emphasized that a distribution should be
chiefly a hypothesis-generating device rather than a calibration tocl,
However a remark commenly made as an addendum to this fact is disputable.
This states that a distribution whose genesis is based on a multiplicity
of models iz of little applicational value since choice among alternative
hypotheses becomes complicated. On the other hand, there is no doubt
about the importance of the Gaussian distribution despite that it arises
from diverse types of situations, a feature for which it earned the name
the "normal" distribution,

The pragmatism of Feller (1968, pp.2-3) is possibly worth advocating:
"In applications, the abgtract mathematical models serve as tools, and
different tools can describe the same empirical situation. The manner in
which mathematical theories are applied does not depend on preconceived
ideas; it is a purposeful technique depending on, and changing with,
experience”, It should be borne in mind that stochastic models, like
all other mathematical models, rest on assumptions and consist of
abstractions. It is generally on the validity of the assumptions that
the success of applications depends rather than on the unigueness or

nen-uniqueness of the models.

1.5.2 Mixing Models

A great number of mixing models are based on the concept of
conditionality. Consider for example the spatial distributions of plants
or insects. Suppose that the region over which the individuals are
dispersed varies in its attractiveness. The probabiiity distribution of

the number of individuals per plot depends on a parameter A corresponding
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to the region in which it falls but because of this heterogeneity the

parameter A is itself a random variable, commonly a discrete variable,
If the variation in this parameter is described by a distribution with
the probability function f(A), we have the marginal distribution of

the plot count X given by

IPP(X

LPr(X

x[A) £(A)dx for continuous f(1), or

"
"

Pr(X = x)

n
"

x|X = A!) f(ll) in the discrete case. (1:5.2:1)

For example, Neyman (1339) in his discussion of insect populations,
suggests taking the distribution of X|A as Poisson(x; A} and that of
A as Poisson(A; a) thus obtaining the distribution of X as Neyman Type A.
In accident studies a similar model is developed for investigating
the phenomenon of accident proneness. It is postulated that the number X
of accidents sustained by an individual in a given population of equally
exposed people is distributed as Poisson(xj i) where A represents a
quantity regarded as a personal factor and generally called proneness,
liability, etc., constant for the individual but which when considered
over the whole population is a random variable whose distribution is
specifiable. For a given individual the value of A is unaffected by
the occurrence of accidents in any previous time-peried or by accidents
sustained by other individuals. The distribution of accidents in the
population is therefore a mixture of the Poisson (see Chapter Two). The
proneness model has also been adopted for the study of industrial
absenteeism (Philipson (1960), Froggatt (1968, 1370)) and of
occasions of sickness resulting in consulting a doctor (Froggatt et al.
(1969)).
Dacey (1969) develops Kemp and Kemp's Gaussian hypergeometric
Type IV (generalized Waring distribution) as a mixture of the Poisson and
discusses an application in a location problem in geographical research.

The same author (Dacey (1969, 1970)) has also considered certain finite



(1]
fa

’ 4
mixtures of the Poisson distribution in other similar problems.
Compound Poisson processes are a common tool in collective risk
theory. In the usual form, a compound Poisson process has probabilities
cf the form
(xt)"

- € g

P {t) = : dH(x} (32.5.2:2)

n n'

4]

where H(x) is the distributicn function of the unconditiomnal risk

distribution and t is a time interval (e.g. Philipson (1960, 1961)).

The assumption of unlimited risk is the basis for using an unconditional
risk distribution H(x) concentrated on the right half real line. Kemp
(19¢8b) has pointed outr that the unlimited risk assumption may be
unrealistic and has suggested using an upper-bounded H(x) instead,
deriving as an example the limited risk compound Poisscn process
resulting from having a truncated gamma distribution as the mixing
distribution H(x).

Market research is another area where the use of mixing models is
commen (e.g. Chatfield (19870)). The negative binomial has been suggested
by Chatfield et al. (1966) for describing the distribution of purchases
made by repeat buyers in a stationary market. This is based on the
assumption that the purchases made by a particular consumer in successive
equal time-periods (usually weeks) are independent and follow a Poisson
distribution with a constant mean, and that this average long-run rate
of buying will vary from consumer to consumer, following a gamma distribution.
Sichel (1982b) has discussed some other mixing distributions.

Chatfield and Goodhardt (1970) have suggested using the beta-

binomial distributicn to describe the distribution of weeks for which

a particular brand or a specific pack-size is bought. They postulate
that the probability that a given customer will buy at least one unit
of the brand (or pack-size) in a particular week is a constant, p, which

is independent of previous purchases. me-period of n weeks,

r
| o
1]
s
=3
(41
a d
(1
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the number of weeks in which the consumer buys at least one unit
will follow the binomial distribution with the parameters n and p.
It is also assumed that p varies from consumer to consumer, following
& beta distribution.
Chatfield (1970} considers congsumer purchasing in terms of the
time between purchases rather than amounts bought. Consider a person
whose probability of buying & particular brand in one week is equal
to 8. If this is independent of previous purchases, the probabllity
that he makes his first in the xth week is given by the shifted geometric
with pgf hiz) = z(1 - 8}/(1 ~ 82). If & varies from consumer to consumer
following a beta distribution then the proportion of consumers in the
population who make their first purchase in the xth week is given by
1
P = J L - e)x-lBeta(B; o, R)de (1.5.2.3)
0

which is the probability function of the beta-geometric distribution.

1.5.3 Clustering models

Generalized distributions arise mainly from clustering medels.

Suppose that clumps or "clusters" of objects are observed, such as

insects or plants in a field or houses in a study area. Then the models

proposed envisage a lattice distribution of such clusters, each cluster

centaining one or more objects, the number within a cluster following

the generalizer distribution, another lattice distribution. Clustering
medels are also called true contagion models. In so far as the existence
of a cluster means that an object is more likely to have other similar
cbjects nearby we may say that these models represent '"true contagion".
This is in constrast with what obtains in mixing models where the
clumping feature is due only to the heterogeneity of the area in which
the object resides. Hence mixing models are regarded as "apparent

contagion' models.
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Most commonly the distribution of the clusters is assumed to be
random, that is, Poisson, whereby the overall distribution of the
cbjects is a generalized Poisson distribution. Clusters could follow
distributions other than Poisson. However if the distribution cof the
clusters is a generalized Poisson distribution the overall distribution
of the units is itself a generalized Poisson distribution. Generalized
Poisson distributions and their genesis are discussed further in
Chapter Two.

Studying the application of stochastic models in epidemiclogy,

Neyman and Scott (1964) obtain the equation

G(z)u) glzh(zlu)|u) (1.5.3.1)
with

h(z{u)

]

Jgizb{zlx}ix] Flxiu)dx

“
where G(z|u) is the pgf of the total individuals infected anywhere in
habitat H during an epidemic started by a single infectious at uj
g(z]u) is the pgf of the number of susceptibles v(u) who would be
infected at point u if an infectious is there; f(x|u) is the pdf of
the location x of a single first generation infectious; h(z)u) is the
unconditional pgf of the total epidemic started by one individual who
himself became infectious at u (see also Neyman (1965)). G(z|u),
cbviously, is the pgf of a generalized distribution. Although this is
primarily a two-stage branching model, it can be given a clustering

interpretation., So can any other two-stage branching model.

1.5.4 Branching models

A branching process is a mathematical model for random "motion™
of a family of "particles" each of which is in an isolated process of
multiplication and death. Examples of such random motions are population
growth, miosis of genes, growth of number of neutrons in an atomic chain

reaction and cascade showers of cosmic rays.
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Branching models give rise to a great number of interesting discrete
distributions. Examples of these are provided by some special cases of
the lost-games distribution and its shifted form. These examples have
been discussed in detail by Kemp and Kemp (13869). The lost-games

distribution (Kemp and Kemp (1968, 1969, 1971)) has the pgf
— = m -
Km,m = Gm(z) = [Gi{zl] £1.5.4.1)

where

g (z) = 501~ (1-u8(1-0)z)*1/(1 - )
and follows from the shifted distribution with the pgf

K (z) = z"pm;F;(im, (m + 1), m + 1; 46(1 - 8)z),

m.n

Kemp and Kemp (1969) shows that K, 1(z) is equivalent to an example of a

multiplicative process, and Kl u(z) and K, u(z) to special cases of
. - »

Neyman and Scott's epidemiological model. Also, K 0{2} is shown to be the

pgf of the distribution of the total number of descendants of the initial
individual in a three~generation branching process, on the assumption of
a binomial first-generation distribution and Kz,o(Z) second-generatiocn
distribution, If, alternatively, a negative binomial first-generation
and a KI,Q{Z} second-generation distribution are assumed, the total
descendants pgf is again K.’o{z).

Feller (1968, pp.295-296) provides another example. Suppose G (z)
denotes the pgf of the size of the nth generation. Then G (z) = G (G _ (2)).

If the number of direct descendants is subject to the geometric distribution

with G(z) = G (z) = (1 - 8)/(1 - 8z), 8 # }, then

Pﬂ(z) i q[(pn _ qn) _ (pn—l._ qn-l )pZ]/[(p“'.l- quﬂ.)_ (pn_ qﬂ )pz]

(1.5.4.2)
where p = 8 and q = 1 - @,




1.5.5 Birth and birth-death models

Pure hirth, birth-and-death, and birth-death-immigration models
provide & basic means for studying the dynamics of a population. It
should be noted that the terms "births", "deaths", etc., are general
terms connoting any form of inputs, outputs, etec. e.g. in a queueing
system. The distributions of population size and of the increase in
the population size whether at any arbitrary time or at an egquilibrium
state are usually lattice distributions.

Hall (1956) obtains the four-parameter system of general Gaussian
hypergeometric probability distributions as the distributions (at
equilibrium] of the population size in some birth and death processes.
Restricted conditions produce the general confluent hypergeometric
probability distributions, the negative binomial and the Poisson
distributions, respectively.

Boswell and Patil (1970) describe the genesis of the negative
binomial from four growth processes. The distributicn is shown to be
the population size increase distribution in a Yule-Furry (pure birth)
process, the population size distribution or the population size increase
distribution in a growth-with-immigration medel, a linear birth process
distribution, or a linear birth-death process distribution. The same
authors have developed the log series-with-added-zerces from z gueueing
or non-linear birth-death process. BSome other discrete distributions
are similarly discussed in Boswell and Patil (1872),

4

1.5.6 Waiting-time distributions

Waiting~time distributions arise in occupancy models and from queues
and other models of recurrent events. By the waiting time for the event A,
we mean the number of trials up to and including the first cccurrence of A,
This is a random variable and its distribution is called the waiting-time
distribution. Tor discrete events, the associated waiting-time will

usually have a discrete distribution.
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Waiting-fime problems arise in occupancy models when we wish to
consider the number of balls needed to satisfy specified occupancy
conditions for the urns e.g. the number of assignments, one ball at a
time, needed for all urns to be oceupied, or at least r urng to have at
least m balls each oy alternatively, k specified urns to have at least
m balls each, and so on. Sometimes waiting-time calculations are
specified by using the (conditional) distributions of numbers of balls
in the urns, given n, the number of balls thrown,

The negative binomiel and the negative hypergeometric distributions
are obtained from waiting-time problems in situations where a fixed
number of observations would produce binomial and hypergeometric
distributions respectively. Similarly, inverse Polya distributions arise
in situations where fixed numbers of observations follow the Polya-type
distributions.

Tﬁe distribution of the duration of the game in the classical ruin
problem and of the busy pericd in a queueing system are examples of
waiting~time distributions. Detailed discussions on these are given by

Feller (1968).

1.5.7 Weighted distributions and damaged models

When an investigation collects a sample of observations produced
by nature according to a certain model, the original distribution may
not be reproduced due to varicus reasons. The alteration on the original
distribﬁtion may be due to non-ascertainability of certain cbservations
or te partial destruction. Anether way in which the origimal distribution
is altered is due teo giving to different observations unegual chances of
being included in the sample. This feature is inherent in some convenient
and natural methods of sampling. A great number of distributions can be

constructed from these models representing various degrees and types of

imperfection in sampling and recording data. Rao (1965) has given a

good discussion of the models.
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If sampling is not random but the probability of inclusion in
the sample depends on the value of the variable to be measured, the
result is g weighted distribution. From an original distribution with
probabilities m , and a weighting function w(x) {the probability of
inclusion in the sample given that X = x), we obtain the probability
function of the welighted distribution as

P = wxwx/fwiﬂi. (1.5.7.1}

Similar definitions are available for continuous distributions. Since
any lattice distributions can be derived in this way from any other
with the same support, interest resides in particular simple cases.

In the simple case when a distribution D with probabilities P
is modified by increasing Pr and compensating for this by multiplying
the remaining P _'s by an appropriate constant the resultant distribution
D¥, with probabilities P*'s, say, is a modified D-distribution. The

P*'s are given by the relation

P = (1 - o) 4+ aP
r r
P = P , XFr {1.5.7.2)
X X
The pgf of D* is
G(z) = (1 - a)z + aglz), (1.5.7.3)

i1f 0 <2 <1, D* is called an inflated D-distribution and if
l <oa%s(l- Pr)_:’ it is called a deflated D-distribution. When
o= (1-p)7, P% =0,

The cases of modified distributions most commﬁnly considered are
those for which r = 0, If r = 0 and Pf = 0, then we have a zero-truncated
D-digtribution, a decapitared distribution as it is sometimes also called.
Ifr=0and 0 <o <1, D" {5 sometimes called a D-distribution with-
added-zeroves.

A detailed review of weighted distributions has been given by

Patil and Rao (1977, 1978) who also present several practical examples.
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Kemp (1973) has pointed out that a type of weighting functicn of the
form w(x) ® & if used to medify any ghpd would yield a modified
distribution which is also ghpd of the same form. This feature would
make it impossible to detect unascertainment in any situations in which

this model applies.

1.5.8 STER Models

The use of STER models arises in connection with an inventory
decision problem. Imposing a decision function on a random variable
called fraction of leadtime out of stock, in a general inventory problem,
amounts to selecting that value of x for which the sum of the values of

ulx) = I (p*/y), % = 05 Lyeus (1.5.8.1)

yEx+1
first exceeds the desired fraction of leadtime not out of stock,
where y is the actual demand during the leadtime occurring with

probability pf. Bissinger (1965) observes that

L]

Iulx) = 1 - pk (1.5.8.2)

x=0

and hence that

P, = I'—_lEF ) (p/y), % =0, 1,... (1.5.8.3)

% 0 y=x+1

is a valid pf for a discrete distribution, the probabilities of this
distribution being Sums successively Truncated from the Expectation
of the Reciprocal of the original random variable Y, the demand variable.
Hence the distribution of X is called the STER distribution corresponding
to the given random variable Y. It is usual to call Y the demand
variable even when the discussion of STERing is not in the context of
inventory decision.

STERing is a modification which can be carried out on any lattice
distribution supported on x = 0, 1l,..., just as weighting, shifting, or
truncation, although even the simplest discrete distributions seem to

lead to complicated STER distributions.
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Suppose G(z) and H(z) denote the pgfs of the demand and the

STER distributions respectively. Patil and Joshi (1968) observe that

H(z) =

dz (1.5.8.8)

= i
1 1 G(z) Py
z

(1 - 21 - p¥)

z
where pg is the probability of zero demand. Note that zero-modification
of the demand variable does not affect the STER distribution. Kemp and

Kemp (1969) show that if

G(z) zpf;({a Y3 b )3 Afz - 1)) (1.5.8.5)

then

H(z) F (1, (a }); 2, (b ); Az - 1)) (1.5.8.6)

p+l1 a+1

(see alsc Kemp and Kemp (13875)).

1.6. Computer Generation of (Univariate) Discrete Variables

1.6.1 Introduction

Distribution sampling is often required when investigating the
small-sample properties of various estimation procedures. It is also
sometimes required in pilot studies preceding complex theoretical or
empirical investigations.

In considering the features of a particular method for generating
data from a given distribution it is important to distinguish between
two modes of usage: that in which the parameters of the distribution
are fixed and that in which they change at each call of the generator
so that any constants have to be recalculated. While some methods,
such as Fishman's (1976) method for generating a Poisson variable, can
operate satisfactorily in the two modes with relatively little adjustment,
many are grossly inefficient when variable parameters are involved.

Another important consideration in the selection of a data-

generating method is the computing device to be employed. On some
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devices, such as micro-computers, sterage is a major constraint, and
hence a slow but compact algorithm may be preferred to a fast one
requiring appreciable storage. On the mainframe, speed rather than
storage is usually the determining factor. Walker's (1974) alias
methed for generating variates from any specified distribution is a
very fast method although it uses a relatively large amount of storage.
Here we briefly describe the major types of methods for obtaining

discrete random variates on the computer.

1.6.2 The inverse transformation method

Suppose we can, conveniently, generate a random variable Y with
distribution function Fv(y) and are interested in generating a random
variable X with distribution functien Fx(x). Then we say the random
variable X is generated by a transformation x = h(y) if h(Y) has the
desired distribution F, (x).

Rigorously considered, the principle applies only to continuous
distributions. However, a development based on the same idea is
employed for discrete distributions. Let Pi. i=1, 2,¢..5 -m be any
discrete distribution (possibly truncated to m outcomes) on the sample
space x , 1 =1, 2,..., m where P = Pr(X = xl). If u is a uniform
(0, 1) variate then X has the desired distribution where X = x if

i-1 i
E Pj < usS E P!, i = Yiwaen Me
i=0 §=0
Note that in this case, the inverse of F(x) is not well-defined, but
~ the idea is the same as for the continuous, and the procedure is
likewise called the inverse transformation method. The implementation
of the method, briefly, is as follows.

The probabilities P are calculated and successively accumulated

to obtain the distribution function F(x)} = ZP’ summing over j from O

to x for all x up to m where m is either the upper limit of the range
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of the support or for e distribution with infinite support, an
arbitrary truncation point such that 1 -~ F(m) is negligible. Using

a standard pseudo-random number generator & u, is obtained which can

be regarded ag a random value from the uniform distribution (0, 1).

The number 2, is compared with successive F(x), 2 = 0, 1,... until the
first F(x) say F(r) is reached which equals or exceeds u . Then x =r
is the required wvalue. This implementation technique is called the
sequential search algerithm.

Chen and Asau (1974) have suggested an important modification to
the sequential search technigue. This involves splitting the cumulative
probability range 0 - 1 into k (say!} equal intervals and noting the
interval in which the cumulative probabilities F(®) lie. When a random
uniform value u is presented for interpolation, only the interwval in
which it lies is searched. This technique is called the indexed-search
algorithm. Xemp and Loukas (1978a, 1978b) have pointed out that ordering
the probabilities.before accumulating them represents yet a further
improvement in speed.

Fishman's (1976) algorithm for sampling from the Poilsson distribution

is a variation ¢f the inverse transformation method.

1.6.3 The acceptance-rejection method

The acceptance-rejection method, like the Inverse transformation
method, was primarily introduced for continuocus distributions {(von
Neumann (1951))., However it has been successfully implemented for
generating discrete variables.

Suppose it is desired to generate a random variable X with
distribution T (x) (and prcbability function f (x)) called the "target"
distribution. It is aszumed that a satisfactory method (preferably an
inverse transformation method) exists for generating another random

variable Y (disecrete or continuous) with distribution Fv(y) (and p.f.



SR Y T e

f,(y)) called the "envelope" distribution. This method consists of
two parts, generating an observation of Y and then deciding whether
or not to set X equal to this sample value or to reject the value and
generate a new value of Y.

To generate X from ocbservations of Y by the acceptance-rejection
method the ratio L(x) = f (x)/f (x) must be bounded. This implies that
the support of fx(x) must be a subset of the support of f_(x).

Let 8 (= 8 _) be the probability of accepting Y (i.e. setting X = y)
when Y = y, and suppose A is the event that sampling stops on a given trial.

It can be shown that

8 = Pr(A) : fx(x)/fk(x) {= 1) (1.6.3.1)

i.e. that the acceptance probability is proporticnal to the likelihood
ratio of observations. An optimal design is to choose Pr(A) as large
as possible so as to have large 8 for all x.

Patil et al. (1975%, add. ref.) have pointed out that the method
can be regarded as a method of "negative mixture'". They show that with

a = sup{fx(x)/fv{x)} (> 1), the function £ (x) given by
£,(x) = [af (x) - £(x)]/(a - 1) (1.6.3.2)

is a probability function, and that

fY(x) = Bxfx(x} + (1 - Bx} fz(x) (1.6.3.3)

where 8 = éu Hence fY(x) is a mixture of fx(x) the desired distribution
and fz{x) another distribution. In this sense fx(x) can be regarded as
a "negative mixture" or an "inverse mixture" of £ (x).

Atkinson (1979) and Kemp et al. (1979) have used the method to
generate data from the Poisson and the binomial (which are discrete
target distributions) using as envelope the logistic, a continuous
distribution. Fishman (1378) has generated a discrete target, the
binomial, from a discrete envelope, the Poisson, Kemp (1980) has discussed

some discrete distributions having simple analytically invertible cumulative



functions, and which can therefore be used as envelopes for generation
of discrete target distributions, as illustrated by the generation of a
logarithmic target using certain of these distributions (the geomeatric

and some special cases of the generalized Waring) as envelopes.

1.6.4% The composition method

Another method of generating stochastic variates on a computer is
the composition method, otherwise known as the method of mixtures
(e.g. Patil et al. (1975)). By a mixture here is meant a countable
(er finite) mixture Fx(x) = Epifi(x) of a family F o, i =1, 2,...
of distribution functions where P >0, i=1, 2,... and Epi = 1.

4 random variable X with distribution F(x) can then be generated
by choosing cne of the Fi(x) with prcbability P, > generating Xi from
the chosen distribution and setting X = X .

In some simulation problems the underlying model may be a
contaminated population. Suppose X has distribution F (x) and X, has
distribution Fz(x) and we know that the desired random variable ¥ comes
from F (x) a fraction 8 of the time and from F,(x) a fraction (1 - &)
of the time. Then

Fx(x) = BFI(X) + (1 -9) Fa(x) (1.5.4.1)

and we can generate ¥X by using this mixture.
Walker's "alias" procedure (Walker (1974), Kronmal and Peterson
(1979)) for generating random variables from any discrete distribution

is a special case of the composition methed.

1.6.5 Specialized methods based on stochastic models

In some cases a particular stechastic model giving rise to a
specified distribution may indicate ways of generating variates from

the distribution by synthesising variates from the compenent distributiens.
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One of the simplest and most popular algorithms for sampling from

the Poisson distribution (with pgf G(z) =

el“-li) is based on the

exponential gap property of the Poisson process. Naylor et al. (1966,

pp.112-114) give a good description of this procedure and its stochastic

derivation.

A method of generating a Hermite variate is based on viewing the

Hermite distribution as the sum of two correlated Pecisson variables.

A bivariate Poisson variable (Xl, Xz) is constructed from three

independent Poisson variables Y

2

variable.

12 Yy Ys where }(1 =Y +Y; and

X, =Y, + ¥ . The sum X + X (i.e. . e & 2Y3) then gives a Hermite

Another method of sampling from the Hermite distribution is to

consider the variable X as the sum of an ordinary Poisson variable X,

and a Poisson "doublet" variable X}. This is evident from the pgf

Gx(z)

explo (z - 1) + o, (2" - 1)}

o, (2 =1

G
Xy

2
£ =l
eClz ( )

-

{z) . ze(z) £1.6.5.2)

which is equivalent to the pgf of X = X + X . Now, if Y ~ Poisson{1),

2

then 2Y ~ Poisson "doublet"(A). Hence if we generate tweo independent

Pocisson variables Y, ~ Poisson(ui), 1i=1,2, then X =Y +2Y ~

Hermite(x; % s az).

Kemp's (1981) methods of generating logarithmic variables are

based on special features of its probability function. So is Kemp's

(1982) variable-parameter method for generating data from a Poisson

distribution.
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1.7 Bivariate Discrete Distributions

1.7.1 Introduction

Generally, a meaningful bivariate distribution is produced by
extending some special features of the univariate prebabilistic models.
In some cases, the bivariate distributions arise naturally in statistical
sampling problems. Apparently for historical reasons, the commonest
application of bivariate discrete distributions seems te be in the area
of model discrimination. Some phenomena are such that two equally
plausible models cannot be distinguished on the basis of observations
over a single timee-period or from quadrats of a single-size, etc., and
we must take observations over two or more Time-intervals, or quadrat-
sizes, as the case may be {Arbous and Kerrich (1951}}).

Any reference to bivariate distributions here and subsequently is
intended for bivariate distributions having marginals of the same form
e.g. (Poisson, Poissen), (Negative binomial, Negative binomial) which
will be called bivariate Poisson, bivariate negative binomial,
respectively. This is in contrast with the wider sense employed by
Leiter and Hamdan (1973) and Cacoulles and Papageorgiou (1980) whose
discussions include (Poisson, Binomial), {Poisson, Negative binomiall,
etc. Bivariate distributions with one marginal discrete and the other
continuous such as Park's (1970) are excluded. Furthermcre, since the
marginals of the bivariate distribution discussed by Patil and Bildikan
(1867) are not the logarithmic but rather the modified logarithmic
distribution, we will call it the bivariate modified logarithmic

distribution.

1.7.2 The structure of bivariate distributions

The most basic way of deriving a bivariate distribution is to
. . kK m . . . . .
make the substitution z = 2,2z, in the pgf ul(z) of a univariate distribution,

thus obtaining



hiz., z ) = u(z:z:). {(1.7.2.1)

1* T2
This, though trivial on its own, has been used by Ord (1875) to define

a8 general bivariate Poisson distribution, A, having the pgf

r

6 ( ) = Noexplr (z'zt - 1)
A Zrr Tyl T i:lexP R ]
- K { kg my
= exp iEl;\iLzl z,0 -1 (1.7.2.2)

(with non-negative integral k,m oand r = 1, 2,...), which is a

conveolution of r bivariate Feisson distributions of the form

) _ \
hA(zl, zz) = exp(lzlz: - 1) (1.7.2.3)

Some caution is needed on the name of A since its marginals are not
Poisson in general. It is probably better to call A a bivariate
Poisson-type distribution. It has been noted by Ord {1975) that the
various types of hivariate Hermite are special cases of A.

Proceeding in the same line, a bivariate binomial-type distribution,
B, is given by

) r k, myy 1
G (z, 22) = 151 q, +p T 2, (1.7.2.4)

Its marginals are members of Teicher's (1961) general binomial family
having the pgf

ulz) = E v, (1.7.2.5%)

A bivariate negative binomial-type distribution, C, can be similarly

defined by the pgf

Y B!

Gc(z1’ z, ) = Il [l + Bi - £

2 i=1

ki mg
2 2 (1.7.2.8)
For r = 1, it is obvious that bivariate negative binomial distributions
of Arbous and Kerrich (1951), Edwards and Gurland (1961) and Khatrl
(1871, pp.213-215) are special cases of C.

It is well known that the two marginals of a given bivariate

distribution are uniquely determined but, theoretically, an infinite
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number of bivariate distributicons can be derived with any two given
univariate distributions as their marginals. However only a few of
the bivariate distributions obtainable from two given univariates
would be of practical value.

If a bivariate D-distribution with D-distribution as marginals
has & 2imple functional form compared with other bivariates with
D-distribution marginals but 1is general encugh to have most of the
important properties, it may be veferred to as the bivariate D-distribution.
In any event, it seems that a particular bivariate would qualify as the
standard in relation to others of its class conly on the grounds of its
pre-eminence in applications.

An elementary result in probability theory states that if a
bivariate distribution F(xl, xz) is derived from two univariates knhown
to be independent, then Correlationfxl, Xz) = 0, but the converse does
not necessarily hold. The marginals of a bivariate having the property
Corr(X , X, ) = O may in fact be dependent. Bivariate discrete distributions
for which zero correlaticn implies independence are very important regarding
applications.

Ahmed (1971) has defined such a class of bivariate discrete

distributions. The class is characterized by the joint probability

funection
Fr o %) = £ (%) £, 02 + 68 () H (x)], e} < 1 (1.7.2.7)
with
HA(XI) = Fg(xl) + FA(xl -1 -1
and
Hy(x,) = E‘B(Xz) + FB(xz -1y -2

where FA(xlj, FB(XZ) are the cumulative probability functions of X and
X, respectively, Since there are only a few discrete distributions

(e.g. Kemp {(1980)) having simple form of F(x), the use of this approach



5 e

for deriving bivariate discrete distributions is limited. However

Ahmed (1971) has given some properties of this class which provide

useful information without much difficulty. In particular upper bounds

on correlations are obtained for members of the class having as marginals

the Poisson, binomial, geometric, and discrete uniform distributions

respectively.

4 bivariate D~distribution whose marginals are known to be

independent is usually called a double D-distribution., This follows from

the corresponding multivariate which is called a multiple D-distribution.

A multivariate discrete distribution is said to be homogeneous if its

pgf contains the generating variables only in the form of a linear

function within a function of a function. In particular, a homogeneous

bivariate discrete distribution is a distribution with pgf of the form

G(zl, zz) = H(tle - Bzaj

An important subset is given by the joint distribution of X ,

{1.7.2:8)

X& when

X1|X2 is distributed as Binomial(xx; 8, xz). This has a pgf of the form

G(zl, z,) = H(az1 + {1 - ﬁ)zz).

{1.7.2.9)

The bivariate discrete distributions specifically discussed in the

literature include:
the bivariate Pecisson with the pgf
G(zl, zz) - exp{al(z1 - 1) + azizz - 1) % aalezz - 1)
(e.g. Paleheimo (1872));
the biQariate binomial having the pgf

6z, 2) = [1+8(z ~1)+8,(2 -1)+8,(zz2 - 11"

(e.g. Kawamura (1873));

the bivariate negative binomial with pgf

_ B - ~ ~ - T T
G(zl, zb) = {1 B:(z; 1) Bz(z2 1) Batzlzé 1))

(e.g. Edwards and Gurland (1961)), and its special case given by

£1.7:2:30)

(1.7.2.11)




z,) = [1-8(z -1)-8,(z - DI (1.7.2.12)

G(zl, 5

(e.g. Khatri (1971, pp.213-215));
the bivariate modified logarithmic with
G(zl, Zz) = [log(l - 8z, -8,z - 632122)]flog(l - 81 - 92 - 83)

0 < Eei <1, 0<8 <1, 1i=1, 2, 3 (1.7.2.13)

(e.g. Patil and Joshi (1968)), and its special case given by

G(zl, zz} = [log(l - Blz1 - 8222]]/log(1 - 61 - 82} (1.7.2.14)

(e.g. Kemp (1981));

the bivariate hypergeometric having the pgf

in) tn)
/N }4?}(—n, ~-M - M Mo-n+ 1z, 2, zlzz)

G(21" 22) = Iy 1¢ 11> "po
(1.7.2.15)

o0
(e.g. Steyn (1957));

the bivariate Neyman Type A-I, -IX, -III with pgf given respectively by

&(z, , z,) = explilexple (z,- 1) +a,(z,- 1) +a (72~ 1113

G(zl, 22) = exp{ll[exp{al(zl- 13} - 1] + hz[exp az(zz- 1) - 1]
+ Alzlexp{al(;l— 1) +w,(z,- 1)} - 11}

G(zl, zz) = exp{)\llexp{alle— 1)} - 1] + Az[exp{uz(zz- 1) - 1]

+ A12[exp{a12(zlzz— 13} - 111
(e.g. Holgate (1968)); apd
the bivariate Hermite with

6(z, , 2,0 = exple (z,- 1) + &,(22- 1) + o (z,~ 1) + Olq(zz- 1+ (z z,- 1)]

(e.g. Xemp and Papageorgiou (1882}).

1.7.3 Marginality and conditicnality

~For a bivariate discrete distribution of (Xl, Xz) having the
pef G(Zx’ zz), the marginals are given by

(1.7.3.1)

1
o
N
St
1

iclz, , z )]

1* T2’z =]
2

ey
-
N
S
1]

{G(zl, z, }] (1.7.3.2)

2 2 2 z1:l




G‘;*”z{Z} = [6lz,, zz)}zi=zg=z £1.7,3.3)
and Gx:-xz(zz} = &z, , zz)]z2= éL_ (1.7.3.4)

Subrahmaniam (1966) has shown that the conditional distribution of

Xl given Xz = n is obtainable from

3" "
Gx ™ -“(zl) = = G(zi, zz)/ i G(zl, zz}\ i (1.7.3,5)
Rl | azz azz le=l zz: 0

Kemp (1981) points out that for a homogeneous bivariate H(az, + 82,),

this reduces to

- > Am) (n) -
Gy |xyen(Z) = B laz )/H (a) (1.7.3.6)

which, interestingly, is independent of 8,

It is easy to show that

_jd 3
6, T _n(zll R G(zlzz, zz)/ — 62,2, zz) (1.7.3.7)
1771 e 3z 9z =
2 2 <z =1jz = 0
1 2
and that
-
n n
a 1 d 1
y xgxen az) 1P F) ) UV E N Zl, a0z 20
2 - "2 =" 2
and
= 3" L 3" “y
zeixz-xi-u(zz) = ;—:'G[E—, zg]/{—j; GLE-' z, ) (1.7.3.9)
z 2 ?Z 2
2 -2 z =0 2~ 0
From the well-known expressions
E(Xz) = %E* Gx (z }] (347910}
Ty 1 Y=
1
d
E(Xg) = -a-;-Gx (22):' i and (1.7.3:11)
- 2 2 z =1
2
E{Xlxz) = -?—z-;T_!:G(ZI, 12)] 3 €1.7.3:12)

31'22'1

the covariance, Cov(X , X,), is easily cbtained by evaluating

Cov(Xi, Xz) = E(Xixz) - E{Xl) , E(Xz) (1.7.3.,13)




It is, of course, clear that

[~ 2
z z, ]
Var(x ) = [2—iog Gle?, &*2) (1.7.3.14)
321 Jz =0,z =0
;| 2
3? z z
and Var(X,) = |—logcle?, e 2) (31.7.3.15)
0z = 5
-2 -z =0,2 =0

1 2

Correlation and similar properties of bivariate distributions can be
easily studied by expansion of the bivariate frequency function in canonical
form. The canonical form of the bivariate Poisson has been derived by
Campbell (1934). Those for bivariate binomial and bivariate hypergecmetric
have been given by Aitken and Conin (1935). Hamdan and Albayyati (1971)
have derived the canonical form of the bivariate negative binomial.
Lancaster (1958) gives the general theory of canonical expansion of
bivariate distributions and Eagleson (1964) applies this to bivariate
distributions derived by the additive property of the corresponding
univariate distribution e.g. Poisscn, binomial, and negative binomial.

The regression of X1 on X2 is anocther property commonly of interest,
When the regression is linear, analysis is comparatively easy. Kenney

(1839) has pointed out that linearity of regression can be characterizec

by the differential equation

d
— G(z, , z )] = ¢ — 6o, z_ ). {1.7.3.1€)
[ s 1 2 o dzi 2

Tt hastﬁlso been shown by Eagleson and Lancaster (1967) that the
regression of X, on X is linear if and only if X, and X, have additive
random elements in common i.e. iff Xl and X% are such that X = Y1 + Ya
and X = Y, + & where . A Y;, Y, are mutually independent and belong to

the same additive family.
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1.7.% Chance mechanisms generating bivariate discrete distributions

As in the univariate case, most bivariate discrete distributions
arise from either the mixing or the generalising (clustering) models.
Khatri (1971) has given a good discussion of these models for multi-~
variate discrete distributions of which the bivariates are a special case.

Hamdan and Tsokos (1971) derive the bivariate Poisson by mixing on

n the bivariate binomial with the pgf
n
Mz, z,) = [1+8(z-1)+8/(z-1)+8,/(zz-1].
where 0 < 6, < 1 and EBi < 1. Arbous and Kerrich (13951) and

Edwards and Gurland (1961) obtain their respective forms of the

bivariate negative binomial distribution by mixing on A the bivariate

Poisson
_ . = - \
h(z,,2) = exp{.l[al(z1 1) + u.a(z1 1)]} (1.7.4,1)
and
h(z , z,) = explio(z-1) +az,-1) +a,lzz~ 1]} (1.7:%:2)
respectively.

Holgate (1969) derives three types of bivariate Neyman Type A from
different generalising (or clustering) models. Kemp and Papagecrgiou
(1982) have discussed the genesis of the bivariate Hermite distributicn

in terms of both the mixing and the generalising models.

1.7.5 Computer generation of bivariate discrete variables

.The most basic way of generating data from a bivariate discrete
distribution is to obtain k = x + (m + 1)x, , the values of k being

the locations when the {P(x

s X, )} array is stored column-by-column in

one-dimensional array, with locations 0; l,..., (m + 1){n + 1) - 1.
The {P(k)} is now treated as a univariate distribution from which random
observations are generated using a general univariate method such as

Walker's alias method (Walker (1374), Xrommal and Peterson (1979)) or
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the modified indexed-search methed (Kemp and Loukas (1978a, 1978b)).
Other general techniques for the bivariate are discussed in Kemp and
Loukas (1%81).

Sometimes, as in the univariate case, the structure cf a bivariate
discrete distribution may suggest a particular method based on the
stochastic model giving rise to the distribution. Kemp and Loukas
(1978a) discuss such methods for generating the bivariate Hermite
variable.

Note that the fixed-parameter and the variable-parameter modes

of usage also apply to the methods for generating bivariate data.

1.8 Summary on "Discrete Distributions”

As a general background to the discussion of generalized Poisson
distributions, the whole subject of discrete distributions has been
briefly considered in this chapter.

The major families of discrete distributions have been described.
These are convenient ways of classifying discrete distributions although
they overlap considerably. Each family or class is defined essentially
along certain mathematical structures. Of all these classes, generalized
hypergeometric distributions, compound distributions, and generalized
distributions will feature most prominently in the remaining part of the
thesis.

The various major chance mechanisms generating discrete distributions
have also been discussed. Mixing models and clustering models will be
discussed further in Chapter 2 in connection with generalized Poisson
distributions.

Methods of generating discrete random variables con the computer
have been considered very briefly. Distribution sampling is often
important in the study of the small-sample behaviour of estimation
methods. It is also frequently employed in pilot studies preceding

complex investications.




The structure and genesis of bivariate discrete distributions
has been discussed. GCenerally, a meaningful bivariate distribution
is produced by extending some special features of the univariate
probabilistic models. Computer generation of bivariate discrete

variates is also considered.
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CHAPTER 2

GENERALIZED POISSON DISTRIBUTIONS

2.) Introduction

A lattice distribution on x = 0, l,... is said to be a generalized

Poisson distribution (GPD) if and only if its pgf can be put in the form

c(z) exp{A(h(z) - 1]} (2.1.0.2)
where h(z) is a pgf. Given X and h(z), then G(z) is unique. We shall

sometimes denote this by G(z) = GPD(A, h(z)). Note however that

6(z) = explafu(z) - 1))
= exp{{%][[(l - 8) + du(z)] - 1}}, 0<8<1
: exp{B[I{l - 8) + du(z)] - 1)}
l.e.
6(z) = G&PD{a, u(z))

. epp(B, (1 ~ 8) + 6u(z)), 0 <8<l (2.1.0.2)

Hence, for a given G(z), the pair (A, h(z)) is not unique.

In this chapter, properties and applications of the generalized
Poisson distributions are discussed. Results from Feller (1968),
Maceda (1948), Warde and Katti (1871), Steutel (1970), and Harn (1978)
are unified to give a clearer picture of the structure of this important
class of discrete distributions.

The expression "classical and contagious discrete distributions"
is common and is indeed the title of the 1963 international symposium at
Montreal, Canada (Patil (editor, 1965)). However until now the distinction
between classical and contagious is unclear. Further complication is
introduced by the subdivision of the latter intc the truly contagious
and the apparently contagious groups. CPDs and all other generalized

discrete distributions are referred to as the truly contagious distributionms,
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in contrast with mixtures or compound distributions which are regarded
as exhibiting apparent contagion. However some discrete distributions
e.g. negative binomial and Neyman Type & are known to belong
simultaneously to both groups.

One may tend to inquire whether the terms "contagious!" and '"non-
contagious™ do not merely describe different parametric forms of
distributions which are basically the same. In other words, is every
lattice distribution necessarily a contagious distributien? And
similarly, is every discrete mixture necessarily a generalized distwibutien,
or vice versa? In particular, is every lattice distribution on x = 0, 1,...
necessarily a GPD? And is every compound Poisson distribution necessarily
a generalized Poisson distribution? These latter two are among the
questions considered in this chapter.

Infinite divisibility characterizes the GPDs among lattice
distributions on non-negative integers and hence this property dominates
the discussion. Some systems of discrete distributions which are subsets
of the GPD class are considered. Certain members of these systems are
identified and the cluster-size distribution of some are determined.

One of the systems discussed comprises 6f mixtures of the Poisson with

inf div continuous mixing distributions supported on the positive half

real line. One of such mixtures of the Peoisson I= that cbtained with the
reciprocal gamma distribution (Pearson's Type V). Its probability function
is derived and some of its important properties are discussed.

!Einally, the different stochastic models giving rise to GPDs are

considered.
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2.2 Properties of Generalized Poisson Distributions

2.2.1 Necessary conditions for a GPD

It is clear that a lattice distribution which is left-truncated or
terminating cannot be a GPD. Hence a necessary condition for a discrete
distribution to be a GPD is that it be a lattice distribution supported
en X% 0, Liuaa

It is important to ask: is every lattice distribution on non-
negative integers a GPD? In other words, is the above condition a
sufficient condition? Suppose that a distribution on x = 0, 1,...
has a pgf G(z). Note that G(z) = exp(u(z)) with Q(z) = logG(z).

Levy (1937, quoted by Lukacs (1870, pp.251-252)) has shown that it is
possible for

6(z) = explv(z) - v(1)] (Z:2:3:1)
to be a pgf while v(z) is a polynomial which is not a pgf. However
v(z) must be such that a term with negative coefficient is preceded
by one term and followed by at least two terms with positive coefficients.

An example 1s provided by

2
viz) = az - Bzz + yzs - ﬁz‘, g > %T" (2.2.1.2)

More recently, Kemp (1978) has shown that the shifted zerc-truncated
Poisson distribution having the pgf (

Az

te™ - 1)/1z(e* - 1)) (2.2.1.3) |

G(z)
is not a GPD. Clearly a lattice distribution on x = 0, 1,... is not
necessarily a GPD.

Ancther necessary condition for a lattice distribution to be a
GPD is

var(X) 2 (PI/P;) {2.2:13.%)

This condition has been stated by Johnson and Kotz (1982) quoting from

an unpublished work of I.R. James, It is easily shown as follows.




- 60 -

Suppose G(z) = Esz‘ is the pgf of the distribution of X and h(z) = Zp:z,

is that of the distribution of Y where

G(z) = expf{ilh(z) - 11}. (2.2.1.5)
Then
X = Plf(Popf‘) (2.2.1.6)
and
var(X) = AE(Y)

_ a
= [PI/(Popf)]Ey pf
= (B /B2 + (/e |y p)
y=2
= 2 /P) (2:2.1.7)

Another necessary condition similar to James‘'s concerns the property of
overdispersion. For a lattice distribution to be a GPD, it is necessary
that

var(X) 2 mean(X) (2.2.1.8)
This is shown in Section 2.3.2. It is, in fact, a more stringent
condition than James's.

Steutel (1970, p.77) has given yet another necessary condition, but
for only non-increasing lattice distributions. If a non-increasing lattice
distribution has probabilities P, x=0,1,..., then a necessary condition
for it to be a GPD is

x(P -P) € P

=R e BT, Zhees (2,2.1.9)

2,22 Tﬁe GPD as a mixture of an n-fold convolution

Iﬁ section 1.4.6 it was mentioned that any generalized D-distribution
is a mixture, on n, of the n-fold convolution of the generalizer, with the
D-distribution as the mixing distribution. It follows therefore that the
generalized Poisson distribution G(z) = GPD(A, h(z)) is a mixture on n of

the n-fold convolution of h(z) with a Poisson mixing distribution.



Let h (z) denote the pgf of a lattice random variable X. Then
the pgf of Y, the n-fold convolution of X is [hl(z)]n. Considering n
as a parameter of the distribution of Y and mixing the distribution on
this parameter with the Poisson (n; A), we have a mixture with the pgf

N -k;\n
Z[h(z)] e—h—!—

G(z)

. oy D@

n!

= e-kexplkh(z)}

n

exp{A[h(z) - 1]}, (2.2.2.:3)

which, by definition, is the pgf of the generalized Poisson distributien.
Kemp (1970) notes that Lundberg (1909) is probably the first person to

discuss the concept of generalized Poisson distributions in this sense.

2.2.3 The infinite divisibility of GPDs

A random variabple X is said to be n-divisible if, for a given
natural number (i.,e. positive integer) n, there exists independent and
identically distributed random variables Xl,..., Xn such that
X=X +...tX is distributed in the same form as the X!*s. A random
variable X is said to be infinitely divisible if X is n-divisible for
every positive integer n. In terms of characteristic function, a
distribution with the characteristic function C(it) is infinitely
divisible if and only if, for every n € N _, there exists a distribution

with the characteristic function U(it) such that

c(it) = f[uiv))" (2.2:3.:1)

or equivalently, if and only if, for every n € N+,

1
u(it) = [c(it)™ (2.2.3.2)
is a characteristic function. A lattice distribution having the pgf

G(z) is infinitely divisible if and only if, for every n € N, s



h(z) = [e(z)]” (2.2.3.3)
is a valid pgf.
That GPDg are infinitely divisible is obvicus from the form of
the pgf

(=)

exp{Aalh(z) - 1)1}

fexplh{(z) - l]}k. - (2.2.3.4)
However, for GPDs, infinite divisibility is not just a property but a
fundamental property, as underlined by the following theorem which has

been stated and proved by Feller (1968, pp.288-290).

Theorem 2

A discrete distribution om x = 0, 1,... is inf div if and only if

its pgf can be put in the form

6{z) = exp{i[h(z) - 1]} {2.2.3.5%)
where h(z) is also a pgf; that is, if and only if it is 2 GPD.
This theorem means that infinite divisibility characterizes GPDs among
lattice distributions.

Infinite divisibility however is a complicated concept. For example,
while the convolution of twe inf div pgfs is infinitely divisible, an
inf div pgf may factorize inteo two pgfs only cne of which is iInf div
(see e.g. Section 2.5.3). Also, mixing an inf div lattice distribution
(e.g. the Poisson or the negative binomial) on even the exponent parameter
may result in a distribution which is not infinitely divisible.

It is generally difficult to ascertain that a given discrete
distribution is or is not inf div since most pgfs are not usually
presented in a base-exponent form, i.e. in the form

a(z) = [h(z)]".
To reduce the difficulty, some sufficient conditicns have recently been
proposed by which some discrete distributions can be shown to be infinitely

divisible. These are considered elsewhere, particularly in Sections 2.4

and 2.5 in this chapter.
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2.2.4 The cluster-size distribution of a GPD

In the representation G(z) = GPD(A, h(z)), if h(z) is supported on

=0, 1,... then the pair (A, h(z)) is not unique, as shown in Section

i

2.1, but the pair (A, h (2)) in G(z) = GPD(}, h (z)) is unique where
h+(z) is supported on x = 1, 2,... i.e. h+(03 = 0. This latter form is
called the Levy-Feller representation. Note that the former can always

be recast into this representation, since

c(z) expiilh(z) - 1]}

h -
exp{ [‘(i)_ hhéo) ]}

exp{ylh (z) - 11}, = Al1 - h(0)] (2.2.%.2)

In particular if h(z) is a generalized hypergecmetric probability

distribution (see Section 1l.4.4), i.e.

h(z) = _F ((a); (b ); A2}/ F ((a)s5 (b3 A) (2.2.4.2)
then
F ((a,)3 (b, )3 Az} -1
b {2 =
* F o{ta, )3 (2 ); A} -1
P a i J

1, {a_ +1); 2, (b +1); Az)
» (a +1); 2, (1-.»j + 1)5 A}

z F {
prt ot (2,2.4,3)

ptl g+1 [
For example,
Neyman Type A distribution

= Poisson()A) V Poisson(a)

szd)__ﬂ}

o o =5 =3 az)
= exp e ¥ =3 -1
z, F (15 25 Az)
= -1
SRV F AL 21 1)

= exply[((e™ - 1)/(e* - 1)) - 11}

= G(z)

i

1

»
'U
>.
o |

= Poisson(y) V Zero-truncated Poisson(a)

with y = A(1 - &%) (2.2.4.4)
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Boswell et al. (1979, p.109) remark that the use of the Neyman Type A
distribution in studying clustering processes has been criticized on the
grounds that it allows for zerc cluster sizes. This criticism clearly
stems from a lack of awareness that the distribution can be formulated
alternatively as Poisson V Zero-truncated Poissen as shown in expression
(2.2.4.4).

Another example which does not seem to be widely known is

Poisson(A} V Geometric(8), D < 8 < 1

= G(z)

l -8
-
R 1Pc(l; -3 6z2) .

P 1Fo(l; ; 8)
. zsz(l; -; 6z) ,
Py oLy -5 8)
{1 -8
= {2 - 1)
N 1l Gz
= Polya-Aeppli(y, ), v = AB (2.2.4.5)

The Poisson V geometric and the Polya-Aeppli tend to be regarded as two
distinct but similar distributions (e.g. Patil and Joshi (1988, p.49)), but
they are in fact identical, as expression (2.2.4.5) shows. The geometric
distributicn has the interesting feature whereby zero-truncation gives the
same result as right-shifting by one unit i.e. the zero-truncated-geometric
distribution is identical with the shifted-geometric distribution.

The Levy-Feller representation shows that GPDs can arize from a
Poisson distribution of clusters where cluster-size ig z random variable
on x = 1, 2,..., having the pgf h (z). Hence the distribution h (z) is
called the cluster-size distribution of the generalized Foisson
distribution, G(z) = GPD(}, h+(z)). For example, as is cbvious from the
above representation, the cluster-size distribution of the Neyman Type A

iz

is the zero-truncated Poisson with the pgf h (z) = (e = l)/(ea - 1).
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While noting the definition given here, it is convenient to refer to

any generalizing compoment, h(z) or h _(z}, of a GPD simply as its

cluster-size distribution, as has been done by Boswell et al. (1979, p.l110).
When a particular lattice distribution is shown to be inf div

(and hence a2 GPD) it is often difficult to obtain the cluster-size

distribution. Kemp (1878) has presented a method for cbtaining the

cluster-size probabilities. This method requires that the form of

H(z) = [6(2))® be known explicitly or squivalently, that the probability

function of B(z) be available explicitly, where here G(z)} is the pgf of

the GPD in question and o is an arbitrary positive real constant. The

theorem on which this method is based also yields a necessary and

sufficient condition for the infinite divisibility of a lattice

distribution.

2.2.5 éumulants and factorial cumulants

A useful relation exists between the cumulants of a GPD and the
moments of its generalizing component, the cluster-size distributieon.
A similar relation connects the factorial cumulants of the former with
the factorial moments of the latter.

Consider

Gx(z) = exp{hlhv(z) - 11} (2.2.5.,21)

where X and Y denote the random variables of the GPD and its generalizing

compohent respectively. The cumulant generating function of ¥ is given

by
K(t) = logGle') = Alhle') - 1]. (2.2.5.2)

It follows therefeore that the rth cumulant, xkr, is given by

-~ T

[
Q—T'h(et{l !
gt t=0 |

|

A(Yu;). (2.2.5.3)

e
[

A
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Similarly, the factorial cumulant generating function of X is

given by

KF(t) = logG(t + 1} = Aa[h(t + 1) - 1}

from which the rth factorial cumulant is cobtained as

Er
k = A hi{t + l)}
X o(r) dtr
- t=0
= }\(Yu;r)].

2.2,6 Khatri-Patel recurrence formula for the probabilities.
Xhatri and Patel (1961) have given a recurrence formula for

computing the probabilities of any GPD when the probability function

(2.2.5.4)

of its cluster-size distribution is known. A simple derivation based

on a technique discussed by Kemp (1967b) is as follows.

Suppose the pgf of a GPD is G(z) = Eszx and that of its cluster-

size distribution is h{z) = Epfzx.

Glz) = exp{rln(z) - 1]}
G'(z) = Xh'(z) 6(z)
i.e. sxB 2T = MExpiz’ T (IR 2")
x . L
E{(x + 1)P 12" = AN(x + L)p¥ =z . IPz
- x .
- z\_zr :;o(r + 1)ps;=npx_r}z

1.&,

X

‘ (x +2)p . = A (r+Lp* P _.

red

A simple recursive formula often also exists for (r + 1)p¥%

(2.2.6.1)

(2.2.6.2)

(2.2.6.3)

(2.2.6.4)

in which case the Khatri-Patel formula can be implemented in two tiers

¢.g. for the Neyman Type A with the pgf

afz -1}

G(z) = expiBle - 111}

we have

(2.2.6.5)
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-0
pg = e, (r+l)ptr = apf 8 PR30 Yo (2.2.6.6)

and the above Khatri-Patel formula reduces to

a, = i, P, = exp[-B(1 - e )]
Ry = B » =0, Yosse
x
(x + 1P = sraarg_r, XS Oy Lysos (2.2.6.7)

2.2,7 Examples of univariate CGPDs

The negative binomial distribution is the first-known and the
best-known of all overdispersed discrete distributions, that is,
distributions whose variances exceed their means. Anscombe (1950)
recalls that in Todhunter's History this distribution is said to have been
described by Montmort in 1714%. Creenwood and Yule (1820), in their
frequently cited work, discuss it as the gamma mixture of the Poisson
distribution, but later Liders (1934) and Quenoculle (1949) show that it
is not only a compound Poisson distribution but also a generalized Poisson
distribution, the logseries being its cluster-size distribution.

Its probability generating function is

a(z) (L+8-82)""% a>0,8>0

"n

[(L- e} - 8z)1%, 8 = 8/(8 + 1)

IFh(a; -3 Bz}/lPh(u; -3 8)

exp{l[zzFl(l, 1; 25 8z)/,F (1, 15 2; 0) - 1]}

- exp{y[log(l - 8z)/log(l - 8) - 1]}. (2.2,1.1)
A useful recurrence relation between its successive probabilities is
given by
_ o
P, = (1-9)

(x + 1)P g WM TP o« HEF0 Ly Zyess £2.2.7.2)
x+1 x
The properties and applications of the negative binomial have been

reviewed by Bartko (1961) and Johnson and Kotz (1969, pp.122-1u42).
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Liders (1934) considers the convolution of the Poisson and the
negative binomial distributions, a distribution which is a GPD having
the cluster-size distribution
h(z) = 8,z + (1 - 9,) log(l-8 z)/log(l - 8 ), (2.2.7.3)

0<o <1,0<8, <1 (see also section 2.4.4).

The generalising of the Poisson distribution by another Poisson
gives the Neyman Type A distribution having the pgf

Glz) = expiBlealgull

- 11}, a >0, B >0, (2.2.7.4)
As has been mentioned before, this GPD is equivalent to Poisson V
zero-truncated Poisson having the pgf

G(z) = exp{A[(e™ - 1)/(e® - 1) - 1]}, (2:2.7.5)

To compute the probabilities of the NTA distribution two
formulae are available, each of which is a two-tier relation. The
commoner is that given in Section 2.2.6 as a special case of Khatri
and Patel's (1961) general recursive formula for the probabilities of
a GPD. The other is in terms of the Stirling numbers § (n) (Douglas

(1970)) and is given by

S,{k) = 0, § (k) = 0, k=1, 2,...

sk +1) = § _ (k) -ks (k),
d x

P, = Czy LA's(r), r=1,2 (2,2.7.6)
S r=1

r

with P = exp[-B(1 - e™™)], X = Be™", and C = exp(1 - ). Martin and

Katti {1962) have given an approximation for the probability function.
Cresswell and Froggatt (1963) discuss the convolution of the
Poisson and the Neyman Type A distributions and call it the "Short"
distribution, the Neyman Type A being referred to as the "'Long"
distribution. The 'Short' distribution can be viewed as a GPD having
the cluster-size distribution
h(z) = 0z + (1 -8)e™ ™, a>0,0<0<1 (2.2.7.7)

Properties of this distribution have been discussed by Kemp (1867a).
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The Thomas distribution (Thomas (1949)}) is related to the Neyman
Type A distribution, being the generalizing of the Poisson by the
shifted Poisson. Its pgf is

13

Glz) = expiB[ze** ™7 - 1]}, (2.2.7.8)

Neyman's Type B and Type ¢ distributions are rarely used. These
together with the Type A are special cases of Gurland's (1958) distribution
resulting from generalizing the Poisson(i ) with a generalized hypergeometric
factorial moment distribution having the pgf

h(z) = JF (e ot By Az(z -~ 1)), o>0, 8 0. (2.2.7.9)

The subsystem of this GPD for which @ = 1 is equivalent to Beall and
Reacia's (1953) distribution obtained as a generalization of Neyman's.
Neyman's Types 4, B, C respectively are the special cases 8 = 0, 1, 2
of Beall and Reacia's.

The Polya-feppli distribution (e.g. Evans (1953), Kemp (1967b)),

considered as Poisson shifted-geometric, has the pgf

6z} = exp{l[ét%—g—gz} - i}}, A>0,0<8 < 1. (2.2.7.10)
It is in fact eguivalent to the Poisson~-geometric having the pgf
e(z) = expja[:i—:Ji- - i] 0<8<1l,a=2x>0 (2,2.7.11)
l —l - ez | 2 , L] L] -

(see Section 2.2.4). A recurrence relation between its probabilities
is given by

(x + 1P, = [20x + 21 -8)]P -8 (x~1)P . (2.2.7.12)

!

Skellam (1952} and Katti and Gurland (1961) have discussed the

Poisson-negative bincomial distribution. This has the pgf

6(z) = exp{A[{1+8-82)%-1}}, a>0,8>0, »>0, (2.2.7.12)
the special case a = 1 being the Poisson-geometric. Its probabilities

can be computed with the two-tier formula
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a, = (B+ i P, = exp{-A[1l - (B + 1)}
a . = (B/(B + 1))r+ u)ar, 20, Lycee
x
(x + 1B = r_[ﬁ 5 S x = 0, Liews (2.2.7.14)

The Poisson-binomial distribution (Skellam (1952) and McGuire et
al. (1957)) has the pgf
G(z) = expirx ((1 -8) +0z)" =11}, (2.2.7.185)

0 <8 <1, A >3, na positive integer,

exp{ang-}—’l’-] - :'} (2.2.7.16)

@ >0, B >0, na positive integer.

which alternatively, is

"

Gl(z)

The special case n = 2 is equivalent to Kemp and Kemp's (1965) Hermite

distribution, which is more conveniently represented (with v, = 2)8(1 - &),
2

v, =18 ) as

G(z) = exp{ul(z - 1) + vz(zz -1, v >0, v, >0 (2.2.7.17)

1
The probabilities of the Poisson-binocmial can be obtained with

the two-tier recursive formula

a, = (a/Ca+10)", B, = expl-M1 - (a/(a + 1)"]}
a, = -alx-n)/(a+1l)
(x+1)P . = A]aP _. (2.2.7.18)

r=
Shumway and Gurland (1860a, 1960b) aim at obtaining recursive formulae
less sysceptible to rounding errors than the above. However the two
which they have presented are in no way more satisfactory. They regard
the one using the Stirling numbers S (n) as the better of the two, but
this has been dismissed by Douglas (1970) as being "not a practical
method of computation for other than limited cases".

Here we present a simple recurrence relation for probabilities of
the Poisson~binomial distribution. This is an (n + l)-term formula and

since n is usually not greater than 4 (McGuire et al. (19587)), it is



substantially less susceptible to rounding errors then the above two-tier
formula or any of Shumway and Gurland's.

From the pgf G(z), using the approach of Kemp (1967b), we obtain

[ n-J‘In-l r
e = [ 1]{ ; 1] | 1 [n : 1]{31 s
1, ta + i 4 + Jf =0 r QJ
@ n=1
= ¢c¢] Ippz"’ (2.2.7.19)
x=0 r=0
which gives
n-1
(x+ 1P, = elbP _ (2.2.7.20)
r=0
with ¢ = ma" /o + 1)
1" {n -1
and br % . r=0, 1,..., 0 - 1.

The case n = 2 of this formula is given by

s D282

L]

(x +2)P . = VP +2vP (

2
with v 2aa/(a + 1)°, v, = X/(a+ 1)

which, as expected, is the recurrence relation given by Kemp and Kemp (1965)

for the probabilities of the Hermite distribution.

2.2.8 Bivariate Eeneralized Poisson distributions

:

As mentioned in section 1.7.1, in some studies it is the bivariate

o

rather than the univariate form of a discrete distribution which is of
interest. The commonest way of deriving a bivariate GPD is to generalize
a Poisson distribution with a (usually but not necessarily, correlated)
bivariate lattice distribution with the pgf g(zl, zz). The pgf of the
resulting bivariate GPD then is

G(zl, zz} = exp{h[g(zl, 22) - 111, (2.2.8.1)

A bivariate GPD of the same form is cbtained if & bivariate
Poisscn(xl, X, 5 Aal, Aue, lulz) is mixed on X by an inf div continuous

istribution supported on the positive half real line or a univariate
distribut ported h t half 11 b t
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GPD. An example of this type of bivariate GPD is the bivariate Neyman
Type A-I (Holgate, 1966) having the pgf

6z , z,) = expiAlexpla (2, - 1) + az(zz - 1) + a”(zlz - I}1)} (2.2.8.2)

2
which is obtained by generalizing the univariate Poisson(xj; A) with the
bivariate Poisson

gz, , z,) = expla (z - 1) + azz(z2 -1 redze -~ 1)) {2.2.8.3)

Two other methods of forming a bivariate GPD consist of
generalizing a correlated bivariate Poisson with two generalizers,
31(7"1) and gz(zz), in the first case and three, 51(21)’ gz(zz) and

g“(z1 zz), in the second. The resulting pgfs, respectively are

G(zl, zz) = exp{kllgl(zl) - 1] + Az[gz(zz) - 1] + ).”[glizli gz(za) - 1]}
{2.2.8.4)

and

G(zz, zz) = exp{xl[gl(zl) - 1] + Az[gz(zz) = 1] + Au[gu(zlzz) - 1]}

{2.2.8,5)
The latter is equivalent to the joint distribution of the correlated
variables Xl s Y1 + YJ, Xz = Yz + Ya where Y1 % Yz, Ya are three
independent univariate GPD variables of the generalizers. Bivariate

Neyman Type A-II and bivariate Neyman Type A-III of Holgate (1966) are

examples of the two methods. These have, respectively, the pgfs

G(zl, zz) s exp{AI[exp{ul(zl- ) - 1] + Az[exp{uz{zz- 1)} - 1]

+ A, lexpla (z - 1) + o, (z,- 1)} - 1]} (2.2.8.5)
and
6(z, , '2."2) = expiA [explo, (z - 1)} - 1] + A [expla,(z, - 1)} - 1]

+ A lexpla (z 2z - 1)} - 1]]. (2.2.8.7)







